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Outlines

m Normal TR Scheme for e- acceleration
m Radiation reaction in a PWFA
m Optimal Beam loading in 2-bunch PWFA

m Scissor-cross ionization injection and laser
interference triggered injection in LWFAs



“<¥» What is High Transformer Ratio?
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Lu W, Huang C, Zhou M, et al, PRL(2006)

HTR mode, R = (45.5-10)/10=3.55
Normal TR mode, R = (20-10)/10=1




HTR e- Acceleration— ideal case
© bem  pver Tl Acelrtngdsmnce(m) 1065

plasma density n,, (>< 101%cm™ ) 0.50334 Driver energy E(GeV) 1.30

Driver energy £ (GeV) 10 10 Trailer energy E(GeV) 45.5
Normalized emittance

oG ) 50->20 100 Normalized emittance e, (mm mrad) 98.44
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~ Initial noise macro vs. practical

> An important question is "*How do the beams evolve from their initial statistical noise?”

» Another question is “Does the hosing instability set any limit on the transformer ratio of PWFA?”

Initial noise of a collimated beam

0.003
> Particle number is N, transverse profile is ! -
Gaussian with rm.s. size o, — the jitter of 0.0021 ] :
bunch center obeys a Gaussian distribution ~_  0.001}
N(0, a,/VN) S 0.000
> For PIC simulation, number of macro particle is ¥ —0.0017
much less than practical particle number, so -0.002+
the initial noise level is different in magnitudes. _oias
> For a 5.8nC driver, the particle number in 0 2 4 6 8
QuickPIC is 128 x 128 x 256, which is 1/932 of §lciwpl

the practical particle number.

> Assuming the real condition is similar with the
simulation with the asymmetry ratio ~ 1/v/N



Time = 10.00 [w;I]

Short driver for more stable acc.

Time = 1000.00 [w;]
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(matched)Spot size(um) 3.87 8.65 iy il On(@H) 0.40
Charge(nC) 5.8>4 0.84->1.36
TR ~4
Energy spread 65 (%) 0 0
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Slide from Dr. X. N. Wang, Dr. S. Y. Zhou and Prof. W. M. An (2021)




“@ Backup scheme with TR ~ 1.5

Asymmetry Ratio
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=2 Linac optimization for ideal beams

® Main Linac (Scheme-I)

If RF gun can provide electron beam with required shape, the main linac just
accelerate beam to 10GeV.
Acceleration:

= The longitudinal shape could be almost maintained

= Short-range longitudinal wakefield + short bunch length + high bunch charge
Energy spread: 1.8% - Difficult design for FFS
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¥ Linac optimization for ideal beams

m Main Linac (Scheme-II)
In order to decrease the energy spread and more flexible and compatible with

other beam shaping scheme, one bunch compressor is introduced

= Long bunch length beam + bunch compressor +short bunch length beam
acceleration

= High accelerating gradient s-band accelerating structure: 27MV/m
= Energy spread: 0.275%

Longitudinal deformation, need more optimization
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> Driver:
<x>=11.63 pm > 3.64 pm
<y>=20.13 pm > 3.64 pm
» Trailer:
<x>=20.52 pm - 8.65 pm

<y>=35.06 pm > 8.65 pm

> Total particle # ~ 1e6
> Real particle # ~ 2.5e10

> Beam loss starts around

25000dt. Only 7.6 pC
particle (E = 20 GeV) left
after 72000dt acceleration




> Driver:
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> Non-ideal energy chirper
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m Radiation reaction in a PWFA
m Optimal Beam loading in 2-bunch PWFA

m Scissor-cross ionization injection and laser
interference triggered injection in LWFAs
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m Optimal Beam loading in 2-bunch PWFA

m Scissor-cross ionization injection and laser
interference triggered injection in LWFAs
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TABLE I. Parameters range obtained from automatic optimizations.

Parameters Range
Ay [0.0885, 7.70]
o:d [ky ] [0.0952, 1.90]
dg [k;l] [1.60,11.1] (the gloabal range)
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Fitting formula for A, and R

> By using the BFGS algorithm and QuickPIC to obtain a large amount of optimal cases

> By using polynomial regression together with k-fold cross-validation method to
determine the degree and calculate all the coefficients

> Valid for 2-bunch, tri-Gaussian electron beams, could be extended to other beam
longitudinal profile

> Submitted to PPCF, under peer review  http://arxiv.org/abs/2202.07401
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=¥ some simplified applications

1.0
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Qe = T:50C, Ly = 12um, d; = 300um
Qu2 =Qa1, Liz=2Ln, d2 =d;
Qa3 =2nC, Liz =Ly, d2=d;
Qda =Qq3, Lta = 2Ly, da =d;

0.00

1 i. 1
0.25 050 0.75
np [10%® cm™3]

Q41 =1.5nC, L1 =12pm, d; = 300um

Qg2 = Qu1, L= 2L, d3=d;
Qaz=2nC/Az =Ly, dz ='d;
Qus = Qg3 Lig =264, dgy = 0y

np [10%® cm™3]
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m Scissor-cross ionization injection and laser
interference triggered injection in LWFAs



» Scissor-cross ionization injection
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We propose to use a frequency-doubled pulse colliding with the driving pulse at an acute angle 640 660 680

to trigger ionization injection in a laser wakefield accelerator. This scheme effectively reduces um] z [um]
the duration of the injection; thus, high injection quality is obtained. Three-dimensional TW (800|‘|m) + 25 TW
particle-in-cell simulations show that electron beams with energy of ~500 MeV, a charge of
N 10 . . i1 I,
40 pC, energy spread of ~1% and normalized emittance of a few millimeter milliradian can 4ev, 40 pC, 10/0 (COUId

be produced by ~100 TW laser pulses. By adjusting the angle between the two pulses, the
intensity of the trigger pulse and the gas doping ratio, the charge and energy spread of the
electron beam can be controlled.
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> Test experiment @ July @ SJTU
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In simulation, with 230 TW laser, we can
get ~ 750 MeV, 130 pC, 0.4% e- beam

Sensitive to 2-laser time delay (sub fs)
Proposed a realistic experiment @ Huairou

Manuscript V1.0 is done



=% Summary and prospects

m Normal transformer ratio e- acceleration for CPI is studied

TR ~ 1.5 is much more stable and seems acceptable.

Start-to-end simulation is ongoing, together with tolerance analysis
Some other powerful damping mechanisms in a real PWFA could be
used to improve the hosing instability. HTR is still alive

m Radiation reaction effects in PWFA is studied

So far, it's completely safe for CEPC plasma injector.
Can not be ignored for future very high energy PWFA colliders

m Optimal beam-loading for 2-bunch PWFA is studied

2 fitting formulas are given. It's important for designing a PWFA

m Some studies on controlled injection in LWFA are presented
It's crucial for a LPA injector for future light sources

Thank you!
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