

中国科学院高能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

Status of CEPC MOST2 vertex detector prototype

Ying ZHANG On behalf of the CEPC MOST2 Vertex detector study group 2022-2-23

Outline

- Overview of MOST2 vertex detector R&D
- Recent test results of TaichuPix2 chip
- Updates on mechanics
- Summary

Overview of MOST2 vertex detector R&D

Can break down into sub-tasks

- > CMOS Pixel Sensor chip R&D
- > Detector layout optimization, ladder and vertex detector support structure R&D

Full size vertex detector Prototype

- Detector assembly
- Data acquisition system R&D

CMOS pixel sensor prototyping

MOST2 vertex update, 2022-2-23

Properties of the TaichuPix2 pixels

Some pixels were integrated with analog buffer for probing the

Demonstrates the nonlinear response of Front-end

Pulse length less than 1 μ s (~6 μ s in ALPIDE)

Properties of the TaichuPix2 pixels

- TaichuPix prototypes record the timestamp of hit at the End of Column (EOC)
 - The delay of the FASTOR was measured with respect to the moment of the pulse injection via the timestamp with a step of 25 ns

Delay time of FASTOR with respect to the pulse injection measured by the time stamp for different power

- Larger analog power cons. leads to faster response
- For the nominal power cons., time walk ~60 ns larger than simulation (~33 ns) due to the parasitic C
 - Measured value includes delay of logic and transmission
- Compromise made between fast timing and low power
 - The case of 140/96 mW/cm² could fit the default trigger window of \pm 75 ns (\pm 3LSB)

Threshold tuning

Threshold of pixels setting by a common current bias ITHR

- Mean threshold increases with ITHR as expected
- ITHR provided by a 8-bit DAC in the chip periphery, but the min. value much larger than the design, resulting in the desired threshold setting being unachievable. The DAC has been modified in TC3.
- Threshold dispersion (i.e. FPN, Fix Pattern Noise) dominates the total noise
- TN (Temporal noise) increases with threshold, due to the nonlinear gain feature of Front-end

TaichuPix2 test with ⁹⁰Sr

- TC2 exposure to ⁹⁰Sr source at different threshold setting (ITHR)
 - S1-S4 function normally, while S5-S6 were masked. Because S5-S6 were found to be problematic in the in-pixel digital part in electrical tests.
- S1-S4 have different analog front-end
 & same digital readout (FE-I3-like)
- S4-S5 using the other digital scheme (ALPIDE-like)

Hit map of TC2 exposure to ⁹⁰Sr for 400 s

- Shape and amplitude of analog signal as expected
- But peaking time and pulse length larger than simulation. One of the reasons is the relatively large charge collection time of sensor in the standard process (~ 150 ns).
- The modified process expected to lead to full depletion of sensors, thus then a faster charge coll.

TaichuPix2 test with ⁹⁰Sr

- **TC2** exposure to ⁹⁰Sr source at different threshold setting (ITHR)
 - > Finding a cluster for adjacent pixels with a timestamp window of 150 ns

- Average cluster size decreases with threshold as expected
- Average cluster size less than 3 as expected
 - Indicates the estimated maximum hit rate (36 MHz/cm²) reasonable
 - Cluster size >1, benefits the spatial resolution (better than $pitch/\sqrt{12}$ = 7.2 µm)

MOST2 vertex update, 2022-2-23

Laser test on TaichuPix2

Test setup

- > 3-D linear translation stage
 - XY-plane for testing, Z-axis for focusing
 - Min repeatable step 0.2 μm
- Optical system
 - Laser diode with 658nm wavelength
 - Expected min spot size ~1.13 μm

Test method

- > One dimension laser scan on the test chip with fixed step of 1 μ m
- > Take the linear fit of the observed X,Y position as the expected laser position

Laser test on TaichuPix2

Test with different laser intensities result in diff. cluster size

Laser test on TaichuPix2

Test with different laser intensities result in diff. cluster size

Test with various laser intensities/pixel threshold ongoing

Vertex detector prototype R&D

- Completed preliminary version of detector engineering design
 - > 3 double layer barrel design
 - > 7 modules in inner layer, 22 modules in 2nd layer, 32 modules in outer layer

Physics simulation to optimize vertex detector layout design

- > The length of inner layer pixel should be the same as other two layers
- > Inner pixel radium should be as close to beam pipe as possible

Impact parameter resolution vs. beam pipe radius

Cooling design

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - > Taichupix : ~100 mW/cm². (trigger mode) ; CEPC final goal : \leq 50 mW/cm²
- Cooling simulations of a single complete ladder
 - > Test bench setup has been designed and built for air cooling, vibration tests
 - > Need 2 m/s air flow to cool down the ladder to 30 °C

	Max temperature of ladder ($^{\circ}\!$					
Power Dissipation (mW/cm2)	Air speed (m/s)	5	4	3	2	1
100		19.6	21.8	25.0	30.6	43.4
150		26.9	30.1	35	43.4	62.6
200		34.2	38.6	45.1	56.2	81.8

Test setup for ladder cooling Use compressed air for cooling

Air Cooling test

- Test bench setup for air-cooling
- Vibration follows Gaussian distribution
 - > Maximum displacement can below 1 μ m for air speed = 2 m/s
 - Expect to cool it down to 30 °C

A few resonant peaks were confirmed at frequencies below 2000 Hz.

Gantry for vertex detector prototype assembly

- 3~5 µm good position resolution require high assembly precision
- Cooperate with domestic company on R & D Gantry automatic module assembly
 - > Pattern recognition with high resolution camera
 - Automatic chip pick-up and positioning
 - > Automatic Glue dispending

Gantry system

Pattern recognition

Automatic glue dispending

Test plan for the TaichuPix-3

- The first full-scale prototype, TaichuPix-3, was submitted
- Tests proposed to be done with 4 steps
- **1.** Probe Card design for the wafer test
 - > Prepared detailed test plan document and contacted with test company (W. Wei)
- 2. Single chip test board design
 - Designed with all the test features for the chip functional study
- 3. Multiple chip test board for the ladder debugging
 - > Designed following the same manner as the ladder but on PCB
 - Signals and power supplies will be limited just with the ladder's dimension
 - > Extra test signals can be connected to the extended area, to help debugging

4. The real flex cable design for the ladder

> Core design and lessons will be exported from 3

Plan for test beam

- Expect to perform beam test in DESY (3 7GeV electron beams)
 - IHEP test beam facility as backup plan (a few hundreds MeV 2.5 GeV electrons)
- Enclosure for detector with air cooling is developed for beam test
 - > Beam is shooting at one sectors of vertex detectors

Install one sector of ladder in vertex detector

Summary

- Promising test results obtained with small-scale sensor chip
 - > Main functional blocks work normally, design bugs found & fix in next version
- The first full-scale prototype (TaichuPix3) in fabrication
 - Chip size 25.7 mm × 15.9 mm.
 - > 12 wafers ordered, expected to be assembled on the ladder prototype
- Finalize the design for full vertex detector
- Air cooling test verified the max. displacement can below 1µm

Recent plan for sensor prototype

- > TID tests with X-ray machine, comparing with the previous result at BSRF beamline
- > Preparation for the full-scale chip test (probe card, test PCB, flex cable ...)

Thank you very much for your attention!