Preliminary Optimization for the Forth CEPC Tracker

Hao Liang (Jilin University)

2022.2.25

Outline

1. Introduction

2. Optimization for the Forth CEPC Tracker

2.1 Beam Pipe

2.2 Vertex detector

2.3 Silicon Internal Tracker

2.4 Drift Chamber

2.5 Silicon External Tracker

3. Summary

• Higgs physics

Physics process	Measurands	Detector subsystem	Performance requirement	
$\begin{array}{l} ZH,Z\rightarrow e^+e^-,\mu^+\mu^-\\ H\rightarrow \mu^+\mu^- \end{array}$	$m_{H}, \sigma(ZH)$ BR $(H ightarrow \mu^{+}\mu^{-})$	Tracker	$\Delta(1/p_T) = 2 imes 10^{-5} \oplus rac{0.001}{p({ m GeV}) \sin^{3/2} heta}$	
$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o bar b/car c/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$	
$H \rightarrow q \bar{q}, WW^*, ZZ^*$	$BR(H \rightarrow q\bar{q}, WW^*, ZZ^*)$) ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV	
$H \to \gamma \gamma$	${ m BR}(H o \gamma\gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$	

- Flavor physics: excellent PID, better than 2σ K/ π separation up to ~20 GeV
- EW measurements: High precision luminosity measurement, $\delta L/L \sim 10^{-4}$

Ref: https://indico.ihep.ac.cn/event/13888/session/8/contribution/56/material/slides/0.pdf

1. Introduction—CEPC Detector

The Forth CEPC detector concept :

- Silicon Vertex & Silicon Tracker for impact parameters and momentum measurement
- Drift Chamber for PID
- Transverse crystal bar ECAL for π_0/γ reconstruction
- Solenoid magnet between HCAL and ECAL

Motivation :

To change the layout and measure the resolution of $d_0 \& P_t$ as good as possible

 $(\boldsymbol{d_0}, \boldsymbol{z_0}, \boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{P_t})$

Ref: https://indico.ihep.ac.cn/event/13888/session/8/contribution/56/material/slides/0.pdf

1. Introduction—Software comparison

• LDT by MatLab

Simulation and reconstructed with Kalman Filter with linear approximation O(10 minutes)

as result check

• Fast Software by Python

Analytic calculation based on least square method O(1 minutes), more flexible <u>as main optimization tools</u>

Ref: Nuclear Inst. and Methods in Physics Research, A 910 (2018) 127–132

2. Initial tracker parameters

Layers	Radius(mm)	$\sigma_{R\phi}(\mathrm{mu})$	$\sigma_Z(\mathrm{mu})$	Thickness $(1\%/X_0)$
Beam Pipe	14.5	-	-	0.15
VTX	Six layers	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.10
Support of VTX layers	-	-	-	0.10
VTX-shell	One layer	-	-	0.15
SITs	Three layers	7.2/7.2/7.2	86.6/86.6/86.6	0.65
DC inner shell	One layer	-	-	0.104
DC wires (15x15mm) and gas	800 - 1800	100	2828	0.0081+0.00413
DC outer shell	1803.0	-	-	1.346
SET	1811.0	7.2	86.6	0.65

• Inward Beam Pipe, better $\sigma(d_0)$

2.2 VTX – Inner radius fixed, changing Rout

- Smaller Rout, a little worse $\sigma(d_0)$ at low Pt, but much better at high Pt
- Smaller Rout, better $\sigma(P_t)/P_t$
- Smaller Rout, less silicon cost
- 16.0 60.0 mm is recommended

2.2 VTX - Changing layout with Rin - Rout = 16 - 60 mm

- Double layers design, less material of supports
- Double layers design, better $\sigma(d_0)$
- Little influence on $\sigma(P_t)/P_t$
- Double layers and equally spacing are favored

2.3 SIT – Outer radius fixed, changing Rin

- Smaller Rin, better $\sigma(P_t)/P_t$ except very high Pt
- Smaller Rin, a little bit worse $\sigma(d_0)$
- Smaller Rin, less cost
- 80.0 mm is recommended

2.3 SIT – Inner radius fixed, changing Rout

- Smaller Rout, better $\sigma(P_t)/P_t$ at intermediate Pt
- Smaller Rout, slightly worse $\sigma(d_0)$
- Smaller Rout, less cost
- 80.0 600.0 mm is recommended

2.3 SIT - Changing layout (position of mid-layer) with Rin - Rout = 80 - 600 mm

- Inward layout, better $\sigma(P_t)/P_t$ except > 50 GeV
- Little influence on $\sigma(d_0)$
- Inward design is favored

- More material & more multiple-scattering
- No improvement to $\sigma(P_t)/P_t \& \sigma(d_0)$
- No need add one more layer

- Mainly determined by PID
- $\delta R >= 1.0 \text{ m}$
- Keep 800 1800 mm by now
- To be updated following with PID study

2.4 DC – Cell-size

- Larger cell-size, less material & less multiple-scattering \rightarrow better $\sigma(P_t)/P_t$ at low Pt
- Larger cell-size, easier engineering
- Hardly affects $\sigma(d_0)$
- Larger cell-size favored

2.5 SET – Resolution

- Little effect on $\sigma(P_t)/P_t$ when spatial resolution getting worse
- No influence on $\sigma(d_0)$
- Less cost when loosing the requirement on spatial resolution
- Could take larger pixel size

3. Summary

Tracker layout optimization gives some preliminary recommendations :

- Beam Pipe
 - Smaller radius of beam pipe gets better $\sigma(d_0)$
- VTX
 - Smaller Rin & Rout of the VTX get better $\sigma(d_0)$ and $\sigma(P_t)/P_t$
 - Double layers design favored
 - Corresponding to previous research
- SIT
 - Favors smaller Rin & Rout, and inward layout
- Drift chamber
 - Volume determined by PID
 - Tracking favors larger cell-size
- SET
 - > The requirement on spatial resolution could be loosed

3. Summary – Recommended Tracker

Layers	Radius(mm)	$\sigma_{R\phi}(\mathrm{mu})$	$\sigma_Z(\mathrm{mu})$	Thickness $(1\%/X_0)$
Beam Pipe	14.5	-	-	0.15
VTX	16/18/37/39/58/60	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.10
Support for each VTX layer	-	-	-	0.10
VTX-shell	65.0	-	-	0.15
SITs	80/253/600	7.2/7.2/7.2	86.6/86.6/86.6	0.65
DC inner shell	798	-	-	0.104
DC wires (20*20mm) and gas	800 1800	100	2828	0.0108+0.0031
DC outer shell	1803.0	-	-	1.346
SET	1811.0	11.5	138.5	0.65

3. Summary – Comparing different designs

Thanks

Backup

$\chi^2 = (\mathbf{y} - \mathbf{G}\mathbf{a})^T \mathbf{W} (\mathbf{y} - \mathbf{G}\mathbf{a})$
$W = C_y^{-1}$
$\boldsymbol{C}_{\boldsymbol{a}} = \left(\boldsymbol{G}^{T}\boldsymbol{C}_{\boldsymbol{y}}^{-1}\boldsymbol{G}\right)^{-1}$
$f(x) = F(a_i, x)$
$\boldsymbol{G_{mn}} = \frac{\partial F(a_i, x_n)}{\partial a_m}$
$x = d_0 \cos \phi + R[\cos \phi - \cos(\phi + \varphi)]$
$y = d_0 \sin \phi + R[\sin \phi - \sin(\phi + \varphi)]$
$z = z_0 - R \tan \lambda \cdot \varphi$
$xy_{meas} = r \cdot \tan^{-1}\frac{y}{x}$
$z_{meas} = z$

If the xy_{meas} is used parabolic not helix function to fit :

For RES only : For M.S. only : $\frac{\Delta P_t}{P_t} \propto a P_t$ ΔP_t $\Delta d_0 \propto a$ $\Delta z_0 \propto a$ $\Delta\theta \propto a$ $\Delta\phi \propto a$

$$\overline{P_t} \propto b$$

$$\Delta d_0 \propto \frac{b}{P_t}$$

$$\Delta z_0 \propto \frac{b}{P_t}$$

$$\Delta \theta \propto \frac{b}{P_t}$$

$$\Delta \phi \propto \frac{b}{P_t}$$

1. Analytic calculation

2. Geometry – TPC-Tracker

Layers	Radius(mm)	$\sigma_{R\phi}(\mathrm{mu})$	$\sigma_Z(mu)$	Thickness $(1\%/X_0)$
Beam Pipe	14.5	-	-	0.15
VTX	16/18/37/39/58/60	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.10
Support for each VTX layer	-	-	-	0.10
VTX-shell	65.0	-	-	0.15
SITs	78/437/796	7.2/7.2/7.2	86.6/86.6/86.6	0.65
DC inner shell	798	-	-	0.104
DC wires (15*15mm) and gas	800 1800	100	2828	0.0081+0.00413
DC outer shell	1803.0	-	-	1.346
SET	1811.0	7.2	86.6	0.65

Layers	Radius(mm)	$\sigma_{R\phi}(mu)$	$\sigma_Z(mu)$	Thickness $(1\%/X_0)$
Beam Pipe	14.0	-	-	0.15
VTX	16/25/37/38/58/59	2.8/4/4/4/4/4	2.8/4/4/4/4/4	0.15
Support for each VTX layer	-	-	-	-
VTX-shell	65.0	-	-	0.15
SITs	153/321/603	7.2/7.2/7.2	86.6/86.6/86.6	0.65
SETs	1000/1410/1811	7.2/7.2/7.2	86.6/86.6/86.6	0.65