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The standard model

Space-time: GR
Matter: Quarks and leptons

Forces: Yang-Mills fields
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The Yang-Mills
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The Weyl-Dirac:
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The three gauge couplings, four 
parameters of the CKM matrix, the nine 
masses of the fermions, the two term in 
the Higgs part=18

We have one additional term: the QCD 
vacuum angle



The U(1)A Problem

• The light u-d quark Lagrangian in the 
chiral limit:

• It has following symmetries:
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• The symmetry is broken due to quark 
pair condensation

• The vector symmetry is unbroken so 
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• Three generators are broken so there 
are three pseudo Nambu-Goldstone 
bosons.

• What happened to the U(1)A? It should 
also be broken and give the fourth 
pseudo Nambu-Goldstone which is not 
observed.

• Solution: U(1)A is explicitly broken due 
to QCD instanton effect. 
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• A classical field configuration of QCD 
vacuum:

    with the winding number n
 

  cannot be smoothly deformed into 
others with a different winding number 
without passing energy barriers
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• However these field configurations with 
different winding numbers can tunnel to 
each other due to instantons.

• So the physical vacuum has to include 
field configuration with all possible 
winding numbers thus has the form:
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• This term violates CP in-variance if 
• The measurement of electric dipole 

moment of neutron gives a upper limit: 

0
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To solve the strong CP problem, one 
introduces the         symmetry  which 
is spontaneously broken  

                   relaxes to zero during 
QCD phase transition.

PQU )1(
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A example: the KSVZ axion

• One introduces an new complex scalar 
and a new heavy quark Q.

=>
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• The ABJ anomaly gives the required 
effective axion-gluon-gluon coupling.
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• After QCD phase transition, the “PQ” 
Nambu-Goldstone boson acquires mass 
due to instanton effects, hence 
becoming a quasi-Nambu-Goldstone 
boson, the “axion”.
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Axion like particles

interested background fields in string 
theory:
• the metric 
• the two-form gauge antisymmetric field

• dilaton
... 
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Axion like particles

• alps arises due to compactification of 
the antisymmetric tensor fields 

• the x are non-compact coordinate, y are 
compact coordinates.
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Axion like particles

• the zero mode acquires a potential due 
to non-perturbative effects on the 
compactification cycle.

• The effective Lagrangian in four 
dimension:
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• Potentials from non-perturbative physics (D-branes, instantons 

etc.) give rise to axion masses.

The Axiverse Svrcek and Witten, arXiv:hep-th/0605206

• String theory has extra 

dimensions which can be 

compactified.

• Axions are KK zero-modes of 

gauge fields compactified on 

closed cycles.

So there are many different axions



One of the axions in the axiverse coupled to the QCD 
sector 

• This axion solves the strong CP problem:

• SSB after  f then instantons 

tilt the hat.

• So the QCD axion is light.

Other axion species have less 
constraints

FFL
~





ALPs

So if the string theory is true, alps 
is inevitably.

Question is: what is the mass?
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• Inflation

• Massive neutrinos

The other known BSM phenomena:

• Dark energy

•...

The Axiverse may explain a lot of 
them 

Arvanitaki et al PRD 81, 123530 (2010) 



a side-note

• Particle physics always try to find 
fundamental particles which constitute 
matter and mediate forces

• Axion can be both matter (massive, 
stable) and force mediator (boson)
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Cold Dark Matter (CDM)

• CDM is widely believed to be an 
important part of the universe based 
on a large number of observations:

a. Dynamics of galaxy clusters.
b. Rotation curves of galaxies.
c. Abundance of light elements.
d. Gravitational lensing.
e. Anisotropies of the CMBR.
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CDM
• Accounts 23% of total energy density of 

universe while baryonic matter accounts 
4%.

• Properties:
     a. Pressureless

     Primordial velocity is very small , at most 
 ~            today .
 b.Collisionless
   Cold dark matter is weakly interacting (so 
dark),   except for gravity.

c10 8
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There are two cosmic axion 
populations:  hot  and  cold.

When the axion mass turns on, at QCD time,
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Axion field in early universe
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The potential term is
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The axion field fluctuations
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The axion field fluctuations
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Axion production by vacuum realignment 
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Cold axion properties
•   number density

•   velocity dispersion

•   phase space density
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axion CDM and BEC
www.phys.ufl.edu/~sikivie/Zierler_Interview.pdf
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Review of Cold axion 
properties

1. Small velocity dispersion:
                                             .

2. High physical space density:
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Cold axions form BEC if they 
thermalize

• BEC results from the impossibility to 
allocate additional charges to the 
excited states for given temperature.

• Axion particle number is effectively 
conserved and is the relevant charge.

• Cold axions’ effective temperature is 
below the critical temperature which is 
very high due to axions high number 
density.
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 axion BEC in three arenas:

     1. in the linear regime within the horizon.

    2. in the non-linear regime within the 
horizon.

  3. upon entering the horizon.
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Axion BEC in the linear regime within horizon.

• From first order of density perturbation 
theory within the horizon, we get:

   where 
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    This implies a nonzero Jeans length 
compared with the collisionless DM.

  
    From equation above, one gets:
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• The equation of motion in non-linear regime 
within horizon:
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• In the galactic halos BEC has the 
property

                          by appearance of vortices.

• BEC is consistent with small scale 
structures. 

0 v
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• Most many particle systems are in the particle 
kinetic regime where: 

• The cold axions are in the opposite regime:

    Let us call it “condensed regime”.

E

E
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• The question is: starting with an 
arbitrary initial state, how quickly 
will the average axion state 
occupation numbers approach a 
thermal distribution?
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• We derive evolution equations for the out of 
    equilibrium system, as an expansion in 

powers of the coupling strength.

• The first order terms average to zero in the 
kinetic regime. The second order terms yield 
the ordinary Boltzmann equation.
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• The axions can be written:

• The Hamiltonian is
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 Solve the Heisenberg equation
 perturbatively,

where                                                            . 

One gets:
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• The second order terms yield the Boltzmann 
equation. The first order terms, along with the 
off diagonal second terms average to zero in 
the “kinetic regime”.

• In the condensed regime, the first order terms 
no longer average to zero and dominate. 
Considering the high occupation numbers of 
axion states, we can replace the operator A, 
A+ with complex numbers whose magnitude is 
of order            .
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We get a c-number equation:

which lead to the thermalization rate :

   for the gravitational interaction.
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