Quantum Sensors for Fundamental Physics II Dissecting Ultralight Bosons with A Network of Sensors

Yifan Chen
yifan.chen@nbi.ku.dk

ITP-CAS, NBI

21 July 2022, online
2022 Summer School of Dark Matter and New Physics
 strong. niels bohr institute

Outlines

Dissecting Axion and Dark Photon Background

Network of Detectors

Vector Sensor Network

Dissecting Axion and

Dark Photon Background

Ultralight Bosons: $\Psi=a, B^{\mu}$ and $H^{\mu \nu}$

$$
-\frac{1}{2} \nabla^{\mu} a \nabla_{\mu} a-\frac{1}{4} B^{\mu \nu} B_{\mu \nu}+\mathcal{L}_{\mathrm{EH}}(H)-V(\Psi)
$$

- Extra dimensions predict a wide range of ultralight boson mass. Dimensional reduction from higher form fields:
e.g. $g^{M N}(5 D) \rightarrow g^{\mu \nu}(4 D)+B^{\mu}(4 D), \quad B^{M}(5 D) \rightarrow B^{\mu}(4 D)+a(4 D)$.
- String axiverse/photiverse: logarithmic mass window. $\ln 4 D, m_{\psi} \propto e^{-\nu_{6 D}}$.
- Ultralight m_{Ψ} as low as $\sim 10^{-22} \mathrm{eV}$ can be naturally predicted. Solution to small-scale problems in the galaxy?
- Coherent waves dark matter candidates when $m_{\Psi}<1 \mathrm{eV}$:

$$
\Psi\left(x^{\mu}\right) \simeq \Psi_{0}(\mathbf{x}) \cos \omega t ; \quad \Psi_{0} \simeq \frac{\sqrt{\rho}}{m_{\psi}} ; \quad \omega \simeq m_{\psi}
$$

Property of Ultralight Dark Matter

Galaxy formation: virialization $\rightarrow \sim 10^{-3} \mathrm{c}$ velocity fluctuation, thus kinetic energy $\sim 10^{-6} m_{\psi} c^{2}$.
Effectively coherent waves:

$$
\Psi(\vec{x}, t)=\frac{\sqrt{2 \rho_{\Psi}}}{m_{\Psi}} \cos \left(\omega_{\Psi} t-\vec{k}_{\Psi} \cdot \vec{x}+\delta_{0}\right) .
$$

- Bandwidth: $\delta \omega_{\Psi} \simeq m_{\Psi}\left\langle v_{\mathrm{DM}}^{2}\right\rangle \simeq 10^{-6} m_{\Psi}, Q_{\psi} \simeq 10^{6}$.
- Correlation time: $\tau_{\Psi} \simeq \mathrm{ms} \frac{10^{-6} \mathrm{eV}}{m_{\Psi}}$.

Power law detection is used to make integration time longer than τ_{ψ}.

- Correlation length: $\lambda_{d} \simeq 200 \mathrm{~m} \frac{10^{-6} \mathrm{eV}}{m_{\psi}} \gg \lambda_{c}=1 / m_{\psi}$. Sensor array can be used within λ_{d}.

Dark Photon Dark Matter

- A new $U(1)$ vector couples in different portals with SM particles:

$$
\epsilon F_{\mu \nu} B^{\mu \nu}+B_{\mu} \bar{\psi} \gamma^{\mu}\left(g_{V}+g_{A} \gamma_{5}\right) \psi+B_{\mu \nu} \bar{\psi} \sigma^{\mu \nu}\left(g_{M}+g_{E} \gamma_{5}\right) \psi
$$

- Cavity/circuits for kinetic mixing, optomechanics for hidden $U(1)$, spin sensors for dipole couplings...
- Similar to axion: extra dimensions, misalignment production (or during inflation), coherent waves.
- Novel aspects: three polarization degrees of freedom:

Longitudinal mode: $\vec{\epsilon}_{0}(\vec{k}) \propto \vec{k}$.
Transverse modes: $\vec{\epsilon}_{R / L}$.

Spin Precession from Axion Gradient

Dipole coupling: $H \propto \overrightarrow{\mathcal{O}} \cdot \vec{\sigma}_{\psi}$.
Effective 'magnetic field' $\overrightarrow{\mathcal{O}}$ causes
precession of the fermions' spin $\vec{\sigma}_{\psi}$.
[Graham, Rajendran, Budker et al]
Effective 'magnetic field' $\overrightarrow{\mathcal{O}}$ causes
precession of the fermions' spin $\vec{\sigma}_{\psi}$.
[Graham, Rajendran, Budker et al]
Effective 'magnetic field' $\overrightarrow{\mathcal{O}}$ causes
precession of the fermions' spin $\vec{\sigma}_{\psi}$.
[Graham, Rajendran, Budker et al]
sample

(e.g., SQUID)
E.g., NMR (Casper), spin-based amplifiers, comagnetometer, magnon ...

- Axion gradient: $\partial_{\mu} a \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \rightarrow \overrightarrow{\mathcal{O}}_{a}=\vec{\nabla} a \propto \vec{\epsilon}_{0}$.

Spin Precession from Axion Gradient

Dipole coupling: $H \propto \overrightarrow{\mathcal{O}} \cdot \vec{\sigma}_{\psi}$.
Effective 'magnetic field' $\overrightarrow{\mathcal{O}}$ causes
precession of the fermions' spin $\vec{\sigma}_{\psi}$.
[Graham, Rajendran, Budker et al]
Effective 'magnetic field' $\overrightarrow{\mathcal{O}}$ causes
precession of the fermions' spin $\vec{\sigma}_{\psi}$.
[Graham, Rajendran, Budker et al]
Effective 'magnetic field' $\overrightarrow{\mathcal{O}}$ causes
precession of the fermions' spin $\vec{\sigma}_{\psi}$.
[Graham, Rajendran, Budker et al]
sample

E.g., NMR (Casper) , spin-based amplifiers, comagnetometer, magnon ...

- Axion gradient: $\partial_{\mu} a \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \rightarrow \overrightarrow{\mathcal{O}}_{a}=\vec{\nabla} a \propto \vec{\epsilon}_{0}$.

Spin amplifier [Jiang et al 21' Nature Physics]

Dipole Couplings and Spin Precession

Dipole coupling: $H \propto \overrightarrow{\mathcal{O}} \cdot \vec{\sigma}_{\psi}$.

Vector-like signals:

- Axion gradient: $\partial_{\mu} \mathrm{a} \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \rightarrow \overrightarrow{\mathcal{O}}_{a}=\vec{\nabla} a \propto \vec{\epsilon}_{0}$.
- Dark photon with dipole couplings:

$$
\begin{aligned}
& B_{\mu \nu} \bar{\psi} \sigma^{\mu \nu} \psi \rightarrow \overrightarrow{\mathcal{O}}_{\mathrm{MDM}}=\vec{\nabla} \times \vec{B} \propto \vec{\epsilon}_{R / L} ; \\
& B_{\mu \nu} \bar{\psi} \sigma^{\mu \nu} i \gamma^{5} \psi \rightarrow \overrightarrow{\mathcal{O}}_{\mathrm{EDM}}=\partial_{0} \vec{B}-\vec{\nabla} B^{0} \propto \begin{cases}\vec{\epsilon}, & m \gg|p|, \\
\vec{\epsilon}_{R / L}, & m \ll|p| .\end{cases}
\end{aligned}
$$

Identification of the couplings?

Kinetic Mixing Dark Photon

- Kinetic mixing $\mathbf{U}(1) \sim F_{\mu \nu} B^{\mu \nu}$ shows up in circuit/cavity. [Chaudhuri et al 15^{\prime}] or geomagnetic fields [Fedderke et al 21'];

ADMX/DM Radio

- Effective currents:

$$
\vec{J}_{\mathrm{eff}} \propto \hat{\epsilon}
$$

Hidden U(1) Dark Photon

- U(1) B-L \& B shows up in optomechanical detectors [Graham et al 15', Pierce Zhao et al 18' 20^{\prime} 21'] or astrometry [Graham et al 15', Xue et al 19' 21'].

- Force:

$$
\vec{F} \propto \hat{\epsilon} .
$$

General Axion \& Dark Photon Background

- Cosmological isotropic background [CaB, Dror et al 21']:

Thermal freeze out, Topological defect decay,
Parametric resonance/tachyonic instability of inflaton,

- Sources from a specific direction:

Cold stream of dark matter, Emissions from superradiant clouds. Dipole radiations from $U(1)$ ' charged binaries

Broad spectrum with potential anisotropy or macroscopic polarization.

Superradiance and Gravitational Atom

- Rotational and dissipational medium can amplify the wave around. [Zeldovichi 72']
- Superradiance: the wave-function is exponentially amplified from extracting BH rotation energy when $\lambda_{c} \simeq r_{g}$. [Penrose, Starobinsky, Damour et al]
- Gravitational bound state around BH :

$$
a\left(x^{\mu}\right)=e^{-i \omega t} e^{i m \phi} S_{l m}(\theta) R_{l m}(r),
$$

- Stringent Constraint using EHT data [EHT 21']:

[YC, Liu, Lu, Mizuno, Shu, Xue, Yuan, Zhao 21']

Axion Wave from Saturating Axion Cloud

- Self interaction saturating phase where $a_{\max } \simeq f_{a}$.
[Yoshino, Kodama 12', Baryakhtar et al 20']

- Two level state with 2, 1, 1 and 3, 2, 2. Annihilations between 3, 2, 2 lead to 'ionized' axion wave with velocity $v \sim \alpha / 6$:

$$
B_{a} \simeq 3 \times 10^{-24} \mathrm{~T} \times \mathcal{C}_{N}\left(\frac{\alpha}{0.1}\right)^{4}\left(\frac{1 \mathrm{kpc}}{r}\right), \quad\left[\text { Baryakhtar et al } 20^{\prime}\right]
$$

- For $\mathrm{BH} \sim 10 M_{\odot}$, superradiance happens for $m_{a} \sim 100 \mathrm{~Hz}$ axion. Axion gradient/DP signals are expected!

Multi-messenger astronomy with GNOME, ngEHT and PTA!

- Localization of the source ?

- Axion-DP coupling:

$$
\frac{1}{2} \partial_{\mu} a \partial^{\mu} a-m_{a}^{2} f_{a}^{2}\left[1-\cos \left(\frac{a}{f_{a}}\right)\right]-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{\alpha}{4 f_{a}} a B_{\mu \nu} \tilde{B}^{\mu \nu}
$$

- Rolling a leads to different dispersions between R / L-handed dark photon:

$$
\omega_{L / R}^{2}=p^{2} \mp p \frac{\alpha}{f_{a}} a^{\prime}
$$

- Tachyonic instability: exponential increase of mode with negative ω^{2}.
- Potential chiral spectrum. How to identify the macroscopic circular polarization?

Network of Detectors

Event Horizon Telescope: an Earth-sized Telescope

- For single telescope with diameter D, the angular resolution for photon of wavelength λ is around $\frac{\lambda}{D}$;
- VLBI: for multiple radio telescopes, the effective D becomes the maximum separation between the telescopes.

- As good as being able to see

on the moon from the Earth.

Event Horizon Telescope: an Earth-sized Telescope

- For single telescope with diameter D, the angular resolution for photon of wavelength λ is around $\frac{\lambda}{D}$;
- VLBI: for multiple radio telescopes, the effective D becomes the maximum separation between the telescopes.
- Stokes polarization basis:

$$
\left(\begin{array}{cc}
I_{I J}+V_{I J} & Q_{I J}+i U_{I J} \\
Q_{I J}-i U_{I J} & I_{I J}-V_{I J}
\end{array}\right) \propto\left(\begin{array}{cc}
\left\langle\epsilon_{R} \epsilon_{R}^{\star}\right\rangle_{I J} & \left\langle\epsilon_{R} \epsilon_{L}^{\star}\right\rangle_{I J} \\
\left\langle\epsilon_{L} \epsilon_{R}^{\star}\right\rangle_{I J} & \left\langle\epsilon_{L} \epsilon_{L}^{\star}\right\rangle_{I J}
\end{array}\right)
$$

Total intensity I

Linear polarization Q, U

Globa Gravitational Wave Detector Network

- Localization due to long baseline $\sigma_{\theta} \propto \lambda_{h} / R_{E}$.
- Macroscopic polarization from correlation of detectors.

Pulsar timing array

- Angular correlation for stochastic isotropic unpolarized GW: HD curves.

- Microscopic tensor nature shows up in macroscopic correlations.

Sensor Network For Domain Wall [swome 21' Natre Physics]

GNOME: worldwide coordinated search for domain wall passing through sensors:
a

- Transient signals for axion or dilaton domain wall in spin sensors or atomic clocks.

Scalar Field Interferometry

Two point correlation function of the scalar field [Derevianko 18']:

$$
\begin{aligned}
\langle a(\overrightarrow{0}) a(\vec{d})\rangle & =\frac{\rho_{a}}{\bar{\omega}} \int d^{3} \vec{v} \frac{f_{\mathrm{DM}}(\vec{v})}{\omega} \cos \left[m_{a} \vec{v} \cdot \vec{d}\right] \\
& \propto \exp \left[-\frac{d^{2}}{2 \lambda_{c}^{2}}\right] \cos \left[m_{a} \vec{v}_{g} \cdot \vec{d}\right]
\end{aligned}
$$

where $f_{\mathrm{DM}}(\vec{v}) \propto \exp \left[-\frac{\left(\vec{v}-\vec{v}_{g}\right)^{2}}{2 v_{\mathrm{vir}}^{2}}\right]$ and \vec{v}_{g} is the Earth velocity in the halo.

- Velocity fluctuation $\sim v_{\text {vir }}$ leads to decoherence at dB length scale.
- Negative correlation appears when $\vec{d} / / \vec{v}_{g}$.
- Localization with $\sigma_{\theta} \propto \lambda / d$ and Daily modulation due to the self-rotation
 of the Earth. [Foster, Kahn et al 20']
- Identification of the macroscopic and microscopic nature?

Vector Sensor Network

based on
arxiv: 2111.06732, Phys. Rev. Res.

YC, Min Jiang, Jing Shu, Xiao Xue and Yanjie Zeng.

Vector Sensor Interferometry For Isotropic Backgrounds

A pair of vector sensors separated by a baseline \vec{d} :

$$
\mathcal{F}\left(\vec{d}, \vec{l}_{l}, \vec{l}_{J}\right) \propto\left\langle\left(\vec{O}\left(t, \vec{x}_{I}\right) \cdot \hat{l}_{l}\right)\left(\overrightarrow{\mathcal{O}}\left(t, \vec{x}_{J}\right) \cdot \hat{l}_{\jmath}\right)\right\rangle, \quad \vec{d} \equiv \vec{x}_{l}-\vec{x}_{J} .
$$

For isotropic sources $f_{\text {iso }}(p, \hat{\Omega})=\frac{f_{\text {iso }}(p)}{4 \pi p^{2}}$:

- Dipole correlation for each mode of $\vec{\epsilon}$ at $d=0$.

$$
\mathcal{F} \propto \hat{l}_{I} \cdot \hat{l}_{J}=\cos \theta_{I J}
$$

Any deviation is a sign of anisotropy.

- Finite baseline distinguishes $\vec{\epsilon}_{0}$ from $\vec{\epsilon}_{R / L}$ at $\xi \equiv p_{0} d \approx 4$.

Vector Sensor Interferometry For Isotropic Backgrounds

A pair of vector sensors separated by a baseline \vec{d} :

$$
\mathcal{F}\left(\vec{d}, \vec{l}_{l}, \vec{l}_{J}\right) \propto\left\langle\left(\overrightarrow{\mathcal{O}}\left(t, \vec{x}_{l}\right) \cdot \hat{r}_{l}\right)\left(\overrightarrow{\mathcal{O}}\left(t, \vec{x}_{J}\right) \cdot \hat{l}_{\jmath}\right)\right\rangle, \quad \vec{d} \equiv \vec{x}_{l}-\vec{x}_{J} .
$$

For isotropic sources $f_{\text {iso }}(p, \hat{\Omega})=\frac{f_{\text {iso }}(p)}{4 \pi \rho^{2}}$:

- A twisted setup can identify the macroscopic circular polarization.

Right and left handed DP respond differently to such setup.

Localization

Sources from a specific direction $f_{\mathrm{str}}(p, \hat{\Omega})=\frac{f_{\mathrm{str}}(p)}{p^{2}} \delta^{2}\left(\hat{\Omega}-\hat{\Omega}_{0}\right)$:

- Short baseline limit with $d=0$: The optimal arrangements of the sensors are the same for $\vec{\epsilon}_{0}$ and $\vec{\epsilon}_{R / L}$, reaching $\sigma_{\Omega} \approx 1 /$ SNR.
- Long baseline limit:

The sensitive directions should overlap with the signals as much as possible with $\sigma_{\theta} \approx 1 /(\operatorname{SNR} p d)$.

Multi-messenger astronomy with GNOME [Dailey et al 21']!

Axion Gradient and MDM DP Dark Matter

3×3 matrix of vector correlation: $\mathscr{C}(\vec{d})_{I J} \propto\left\langle\left(\overrightarrow{\mathcal{O}}\left(t, \vec{x}_{l}\right) \cdot \hat{l}_{l}\right)\left(\overrightarrow{\mathcal{O}}\left(t, \vec{x}_{J}\right) \cdot \hat{f}_{J}\right)\right\rangle$ with $f_{\mathrm{DM}}(\vec{v}) \propto \exp \left[-\left(\vec{v}-\vec{v}_{g}\right)^{2} /\left(2 v_{\text {vir }}^{2}\right)\right]$.

- 5 possibilities when two \hat{l}_{i} align:

\vec{O}^{MDM}
$\propto \vec{\epsilon}_{R / L}$
- Straight lines are not influenced by \vec{v}_{g}.
- Axion and MDM DP have totally different spatial correlations.

Dipole Angular Correlation

For $f_{\mathrm{DM}}(\vec{v}) \propto \exp \left[-\left(\vec{v}-\vec{v}_{g}\right)^{2} /\left(2 v_{\text {vir }}^{2}\right)\right]$,
Tune \vec{l}_{1} and \vec{l}_{2} with certain directions at the same location:

$$
\begin{aligned}
\Gamma\left(\vec{l}_{1}, \vec{l}_{2}\right) & =\left(\vec{l}_{1}\right)^{\mathrm{T}} \cdot \mathscr{C}(0) \cdot \vec{l}_{2} \\
& = \begin{cases}\frac{v_{\text {vir }}^{2}}{2} \vec{l}_{1} \cdot \vec{l}_{2}+\frac{1}{2}\left(\vec{l}_{1} \cdot \vec{v}_{g}\right)\left(\vec{l}_{2} \cdot \vec{v}_{g}\right) & \text { Axion Gradient; } \\
\frac{v_{\text {vir }}^{2}}{2} \vec{l}_{1} \cdot \vec{l}_{2}-\frac{1}{6}\left(\vec{l}_{1} \cdot \vec{v}_{g}\right)\left(\vec{l}_{2} \cdot \vec{v}_{g}\right) & \text { MDM DP; } \\
\frac{1}{6} \vec{l}_{1} \cdot \vec{l}_{2} & \text { EDM DP. }\end{cases}
\end{aligned}
$$

- Universal dipole angular correlation: $\vec{l}_{1} \cdot \vec{l}_{2}=\cos \theta$, in constrast with monopole or quadruple (H.D. curve) for stochastic GW searches.
- \vec{v}_{g} brings in anisotropy, with different signs for axion gradient and MDM DP.

Summary

- Correlations of vector sensors can identify the macroscopic property and the microscopic nature of the bosonic background:

Coupling type, macroscopic polarization and
localization/anisotropy ...
\rightarrow Multi-messenger astronomy/cosmology!

- How to improve sensitivity based on those information?
- Quantum metrology can play huge rules in fundamental physics!

Thank you!

Appendix

