Pixelated readout TPC technology for CEPC

Huirong Qi Institute of High Energy Physics, CAS March 25 2022

Content

- Motivation
- Pixelated readout technology
- Feasibility of pixelated readout
- Prototype R&D plan
- Summary

Physics requirements

- Provide decent #Hits (for track finding) with high spatial resolution compatible with PFA design (low material)
 - dP/p ~ 0.1%
- Provide dE/dx + dN/dx ~ 2-3%
 - Essential for Flavor @ Z pole
 - Beneficial for jet & differential at higher energy

Motivation: Challenges of TPC

- Pad readout TPC operational at modest Lumi @ Higgs, with 3 T Bfield or higher.
- Pixelated readout TPC operational at high Lumi (2 E36) @ Z & 2 T

B-Field

- CEPC @ Z pole with 50 MW: 1.92 E36
- FCC ee @ Z pole 2.3 E36
- Challenges of TPC as main tracker
 - Ion distortion?
 - Material Budget? (Compatibility)
 - Total power & Readout?
 - #Hits & Intrinsic spatial resolution?

Pixelated readout TPC technology

- A pixelated TPC is a good option to provide realistic physics requirements and can work at high luminosity (2 E36) on CEPC.
- Pixelated \rightarrow better resolution \rightarrow low gain(<2000) \rightarrow less distortion
- Pixelated readout TPC is a realistic option to provide at CEPC
 - Can deal with high rates (MHz/cm^2)
 - High spatial resolution \rightarrow better momentum resolution
 - dE/dx + Cluster counting (In space)
 - Excellent two tracks separation

track of high energetic particle

Standard charge collection:

Pads (1mm×6mm)/ long strips Instead:

Bump bond pads are used as charge collection pads.

Highlight: Good spatial resolution

#Hits/track ~220 ~28k	$\sigma_{r arphi 0}$	100um	16um
<i>Cain</i> 5000 2000	#Hits/track	~220	~28k
<i>Guin</i> 5000 2000	Gain	5000	2000

Proposed a feasibility study

• Feasibility of pixelated readout TPC

- 1. Material budget of endplate/barrel
- 2. Ions affect and distortion
- 3. Occupancy
- 4. Power consumption
- 5. Running at 2 Tesla
- 6. Cost estimation

#1. Material budget of endplate/barrel (OK)

- Typical requirement: $\sim 0.1 X_0$ at Barrel.
- At CDR setup (Pad TPC): conservative implementation of material budget
 - 0.1 X_0 at Barrel, 0.4 X_0 at endplate (sufficient for any readout with cooling)
 - Sizeable effects on detector performance, but tolerable
 - Observed on Photon conversion, PFA, ...
- Pixelated readout TPC can reduce the material from CDR setup

#2. lons affect and distortion

- Distortion: proportional to event rate, ion back flow and gain. Largest distortion occurs at the inner region
- Analysis (cite#1) shows that at
 - IBF×Gain ~ 1
 - Lumi ~ 2E36
 - Hit from Physics event only
 - Distortion ~ 100 micrometer ~ pixelated size
 - Might limit spatial/momentum measurement
- Open question: to be addressed by R&D
 - Correction by at least 1 order of magnitude?

==> future simulation studies...

- In-situ calibration with Laser system/Z->mumu event (cite#2)
 - ==> laser system test ... collaborative studies with LCTPC
- Contribution from other sources, especially at Z pole

==> MDI, Beam background

#3. Occupancy (Safe)

- Low voxel occupancy : 1E-5 to 1E-6 (cite#3)
- At 2 E36 with Physics event only, even bunch distribution(cite#4).
 - Pad readout (1mm \times 6mm), inner most occupancy 1 E-4
 - Pixelated readout (55 $um \times$ 55um), much **LOWER** inner most occupancy ~ 1 E-6
- Pixelated readout can easily handle a high hits rate at Z pole.
 - The test beam showed GridPix TPC prototype can handle up to 2.6M hits/s per chip (cite#5).
- Reconstruction algorithm with high Pile Up need to be developed.

Marlin TPC software package

2000

Cite#3 Occupancy in the CLIC

Cite#4 https://doi.org/10.1088/1748-0221/12/07/P07005

Cite#5 GridPix detectors

#4. Power consumption

- Pixelated readout TPC@55um×55um@NIKHEF
 - Total channels: 10⁹
 - Total power: 200 kW
 - Power consumption of Gridpix: ~1A@2V (2W) depending on rate
 - 1W/cm², No optimization
 - Next plan of total power: <100kW
 - TPX4: <500mW/cm^2 (plan)
- Pad readout TPC@1mm×6mm@IHEP
 - Total channels: 10⁶
 - Total power: <12 kW
 - 48mW/cm^2
 - WASA ASIC chip: 3.5mW/ch@40 MS/s(cite#6)
- To be addressed by R&D@IHEP/Tsinghua
 - Optimization pixelated readout @300um×300um
 - Total channels: 10^8
 - Total power: <20 kW
 - <100mW/cm^2</p>
- 2-phase CO₂ Cooling is optional@IHEP

100	12023		
E	1.1.1.1.1.1.1	94.5	
	1. history	-	

	AGET	PASA+ALTRO	Super-ALTRO	SAMPA
ГРС	T2K	ALICE	ILC	ALICE upgrade
Pad尺寸	6.9x9.7 mm ²	4x7.5 mm ²	1x6 mm ²	4x7.5 mm ²
通道数	1.25 x 10 ⁵	5.7x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
读出结构	MicroMegas	MWPC	GEM/MicroMegas	GEM
增益	0.2-17 mV/fC	12 mV/fC	12-27 mV/fC	20/30 mV/fC
成型方式	CR-(RC)2	CR-(RC)4	CR-(RC)4	CR-(RC)4
达峰时间	50 ns-lus	200 ns	30-120 ns	80/160 ns
ENC	850 e @ 200ns	385 e	520 e	482 e @ 180ns
波形采样方式	SCA	ADC	ADC	ADC
采样率	1-100 MSPS	10 MSPS	40 MSPS	10 MSPS
精度	12 bit(external)	10 bit	10 bit	10 bit
功耗	<10 mW/ch	32 mW/ch	47.3 mW/ch	17 mW/ch
CMOS工艺	350 nm	250 nm	130 nm	130 nm

11

#5. Running at 2 Tesla

- TPC can work well at the 2 T B-field without any E×B effect.
- Momentum resolution is better (>20%) compared with the pad readout technology at the same geometry.
 - Pixelated technology: ~10,000hits/track; Pad: 220hits/track
 - Transverse diffusion constant is same level at 2 T & 3 T
- Open question: to be addressed by R&D
 - Optimized TPC geometry at 2 T B-field

#6. Cost estimation

- The total cost of a pad or a pixel readout is at same level.
 - The cost goes comparably to pad technology for massive production referred to Gridpix chip of NIKHEF
- All readout options need CO₂ cooling and electronics and that drives the TPC readout cost. (cite#7)

		TPC COST ESTIMAT	ION (unit:	*10K R	VB)	Cotal: 1	180 Milli	ons	RMB
	ITEM	DEVICE ITEM	TYPE	UNIT	Quantity	Prive/	Total		
	3.1	TPC detector (TPC)					18000.00		
	3.1.1	Chamber					3600.00		
	3.1.1.1	Fieldcage		set	1	1200.00	1200.00		
Including the	3.1.1.2	Connector		set	1	800.00	800.00		
	3.1.1.3	Barrel		set	1	1000.00	1000.00		
cooling	3.1.1.4	Support device		set	1	600.00	600.00		
	3.1.2	Readout					2500.00		
system	3.1.2.1	MPGD detector		set	1	800.00	800.00		
	3.1.2.2	Support board		set	2	600.00	1200.00		
	3.1.2.3	Readout board		board	200	2.50	500.00		
	2 1.3	Electronics					10000.00		
	3. 1. 3. 1	FEE ASIC readout		channel	1200000	0.002	2400.00		
	3.1.3.2	Cables		set	50000	0.03	1500.00		
	3. 1. 3. 3	Optical driver		set	50000	0.03	1500.00		
	3.1.3.4	Optical link, connectors		set	500	1.00	500.00		
	3.1.3.5	DAQ		set	5000	0.30	1500.00		
	3.1.3.6	Crate and controller		set	50	20.00	1000.00		
	3.1.3.7	Cooling sytem		set	1	1600.00	1600.00		
	3.1.4	Calibration					500.00		
	3.1.4.1	Calibration system		set	1	500.00	500.00		
	3.1.5	HV and Gas system					1400.00		
	3.1.5.1	HV and low power		set	1	800.00	800.00		
	3.1.5.2	Gas system		set	1	300.00	300.00		
	3.1.5.3	Monitor system		set	1	300.00	300.00		

Feasibility of pixelated readout

- Feasibility of pixelated readout TPC
 - Material budget of endplate/barrel V
 - Occupancy √
 - Power consumption \mathbf{V}
 - Cost estimation √
 - Running at 2 Tesla √ (need R&D)
 - Ions affect and distortion √ (need R&D)

Prototype R&D plan

- Advantage and realized R&D
 - Prototype R&D plan
 - Improved dE/dx
 - Optimization of cluster/pixel size

Prototype plan #1

Realization of pixelated technology collaborated with Tsinghua

Bump bond pixelated readout with Micromegas detector	size	To be addressed by R&D
 ≥300um×300um Developed the readout chip by Deng Zhi (Tsinghua) Developed the Micromegas 	1-2 cm^2	 Research on pixelated readout technology realization Optimization of cluster profile and pad size Study of the 'dN_{cl}+dx'
 Developed the Micromegas detector sensor at IHEP Development of the new module and prototype 	100 cm^2	 Study the distortion using UV laser tracks and UV lamp to create ions disk In-situ calibration with UV Laser system Study of the 'dE/dx+dN_{cl}/dx'
Mich detect Pixe read PCI Read	romegas ctor Plated ^{+Pro} lout B board	gn+assembled bond Deign+commissioning at IHEP/Tsinghua

Prototype plan #2

- Realization of pixelated technology using GridPix chip collaborated Bonn
 - 200um×200um and smaller
 - Design the different readout pixelated size
 - Collaborated with Bonn University to produce the new

prototype (Peter, Jan and Jochen from Bonn)

• Study using UV laser tracks

Production of GridPixes

- a) Cleaning
- b) Deposition of Protection layer
- c) SU-8 covering
- d) Exposure with mask
- e) Aluminium layer is deposited
- f) Another layer of photoresist is applied, exposer with a mask creates a hole pattern, and the holes are chemically etched
- g) The wafer is diced
- h) The unexposed SU-8 is resolved

Study the cluster/pixel size

- R&D plan will mainly focus on making pixelated TPC work
- Using the existing UV laser TPC prototype
- Some key issues R&D
 - improve the laser track resolution and cluster size
 - improved dE/dx to 2% level (TOA+TOT methods)
 - Pixel size:(300µm or similar level size)
 - Micromegas + WASA ASIC Chips (Gain: 40mv/fC)
 - Almost without IBF (Gain< 2000)

Resuls of the laser TPC prototype

dE/dx along drift length

Electron cluster profile

10bit TOT + 12bit TOA

 $dE/dx + dN_{cl}/dx$

Summary

- Pad readout TPC can operate @ CEPC W/Higgs operation, with 3 T B-field or higher.
 - A laser TPC prototype has been successfully developed and studied at IHEP in the last 6 years. Ionback flow can be reduced to 1 level at gain 2000.
- High Lumi operation (2 E36) @ Z with 2 T B-Field is challenge for gaseous.
 - Material budget, construction cost, power & cooling, Occupancy is OK.
 - Further study is needed to better understand the Distortion (induced by ion charge) and beam background:
 - Geometry Optimization
 - Distortion correction & in-situ calibration
 - Beam background validation & simulation
- Pixelated readout TPC is promising, compared to Pad readout:
 - Much Lower Occupancy;
 - Lower Ion backflow;
 - High Precision;
 - Potential for dN/dx, essential for PID
- R&D plan focus on the Pixelated TPC readout & prototype, optimization to the local configuration (for dN/dx, power consumption, ...) and global geometry optimization (inner Radius, etc)
- Good International/domestic Partners: LCTPC, CEA-Saclay, NIKHEF, Tsinghua...

Many Thanks

- Especially thanks to Jianchun, Manqi, Gang, Joao, Xinchou, Zhiyang, Chang Yue, Liwen, Deng Zhi
- Especially thanks to some good inputs from Ron Settle, Peter Kluit, Fujji Keisuke, Paul Colas, Jan Timmermans, Jochen kaminski from LCTPC

Motivation of TPC technology

CEPC Accelerator TDR Design

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	4	5.5	
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.	036	
Crossing angle at IP (mrad)		16.5 ×	2		
Piwinski angle	3.48	7.0	2	3.8	
Particles /bunch Ne (1010)	15.0	12.0	8	0.0	
Bunch number	242	1524	12000 (10% gap)	
Bunch spacing (ns)	680	210	1. 7	25	
Beam current (mA)	17.4	87.9	-40	51.0	
Synch. radiation power (MW)	30	30	1	6.5	
Bending radius (km)		10.7			
Momentum compaction (10-5)		1.11			
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP og/og (µm)	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters & /&	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079	
RF voltage VRF (GV)	2.17	0.47	0	10	
RF frequency far (MHz)		650			
Harmonic number		21681	6		
Natural bunch length $\sigma_{\rm f}$ (mm)	2.72	2.08	- cil	n	
Bunch length of (mm)	4.4	11.00	Jesi		
Damping time $\tau_k / \tau_p / \tau_E$ (ms)	AF	aline	049.5/84	19.5/425.0	
Natural Chromaticity	Bas	101	-491/-1161	-513/-1594	
Betatra	N P	363.10/3	55.22		
2010	0.065	0.040	0.	028	
H (2 cell)	0.46	0.75	1	.94	
Natural energy spread (%)	0.100	0.066	0.	038	
Energy spread (%)	0.134	0.098	0.	080	
Energy acceptance requirement (%)	1.35	0.90	0	.49	
Energy acceptance by RF (%)	2.06	1.47	1.70		
Photon number due to beamstrahlung	0.082	0.050	0.	023	
Beamstruhlung lifetime /quantum lifetime? (min)	\$0/80	>400			
Lifetime (hour)	0.43	1.4	4.6	2.5	
F (hour glass)	0.80	0.94	0	99	
Luminosity/IP (1054 cm-2s-1)		10	17	(32)	

	(ttbar)	Higgs	W	Z
Number of Ips		2		
Circumference [km]		100.	0	
SR power per beam [MW]		30		
Half crossing angle at IP [mrad]		16.	5	
Bending radius [km]		10.7	7	21
Energy [GeV]	180	120	80	45.5
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037
iwinski angle	1.21	5.94	6.08	24.68
Bunch number	35	249	1297	11951
Bunch population [10^10]	20	14	13.5	14
Beam current [mA]	3.3	16.7	84.1	803.5
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	27/1.4
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	· Dosi	gn (35
Bunch length (SR/total) [mm]	2.2/2.9	2.2/2	red Des	2.5/8.7
Energy spread (SR/total) [%]	0.15/0.20	1 Improv	0.07/0.14	0.04/0.13
Energy acceptance (DA/RF) [%]	2.3. 202		1.2/2.5	1.3/1.7
Beam-beam parameters (ksix/ksiy)	0.071	0.015/0.11	0.012/0.113	0.004/0.127
RF voltage [GV]	10	2.2	0.7	0.12
RF frequency [MHz]	650	650	650	650
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202
Beam lifetime [min]	18	12.3	55	80
Hour glass Factor	0.89	0.9	0.9	0.97
aminosity per IP[1e34/cm^2/s]	(0.5)	(5.0)	16	(115)
				0

- https://indico.cern.ch/event/1129966/contributions/4747428/attachments/2404058/41121 02/ECFAMIniWS-2.pdf
- CEPC Study Group. "CEPC Conceptual Design Report: Volume 2-Physics & Detector." arXiv:1811.10545 (2018).

Pad TPC technology

- At a circular collider CEPC there is place for different experiments, one of the detector concept could use a TPC as the main tracker.
- For Higgs, W and top running **no problem** for all TPC read out technologies.
- Laser TPC prototype has been successfully developed in last 6 years at IHEP.

Pad TPC for collider

- Active area: 2×10m²
- One option for endplate readout:
 - GEM or Micromegas
 - $-1 \times 6 \text{ mm}^2 \text{ pads}$
 - 10⁶ Pads
 - 84 modules
 - Module size: 200×170mm²
 - Readout: Super ALTRO
 - CO₂ cooling

- $\label{eq:https://agenda.linearcollider.org/event/5504/contributions/24543/attachments/20144/31818/PositiveIonEffects-kf.pdf$
- https://indico.fnal.gov/event/46746/contributions/208077/attachments/141125/177798/LCTPC.pdf
- Di Meglio, Alberto, et al. CERN Quantum Technology Initiative Strategy and Roadmap. No. CERN-OPEN-2021-012. 2021
 - arXiv:1902.01987 [physics.ins-det, 2019] Yuan, Zhiyang, et al. International Journal of Modern Physics A 36.22 (2021): 2142015.
- Chang, Y., et al. "Performance of the continuous ions suppression TPC prorotype for circular collider." Journal of Instrumentation 15.09 (2020): C09065.

First step: Optimization of pixelated size

Using the TPC prototype

Pixelated size should be optimized

- From 55um×50um to 300um×300um
- All of channels will be reduced from 10⁹ to 10⁷
- Based on the existing Prototype and experimental data results, the pad size could be estimated about 300um×300um or 200um×200um

https://agenda.linearcollider.org/event/9533/contributions/49862/attachments/37746/59205/2022_01_13%20LCTPC%20Collaboration%20Meeting.pdf

- https://wiki.classe.cornell.edu/pub/ILC/WWS/TrackCornellSim/TPC_Detector_Resp_Sim_LCWS_Paris_19_Apr_2004.pdf
- http://w4.lns.cornell.edu/~dpp/linear_collider/images/talks/20070531-Peterson-LCWS07-SimRecon.pdf

Gridpix Cost

 For the prototype, as know the costs, but they will go down substantially because of prices going down for large numbers. E.g. for 1 module of 100 chips we need 1 wafer 3000 euro plus post processing 3000 euro. (reference from NIKEHF GridPix)

Highlight: Good spatial resolution

2000

5000

Gain

<2000