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Advantages of dN_/dx

N, number of primary ionizations follows Poisson
statistics

independent from cluster size fluctuations

insensitive to highly ionizing 6-rays

independent from gas gain fluctuations

a 2 m track in a He — mix gives Ncl > 2400 (for a m.i.p.):
Oanc/ax/(ANg/dx) = N2 < 2.0%
potentially, a factor > 2 better than dE/dx

resolution scales with L0-5 (not L-%37 as in dE/dx)

Further advantages of Helium

low primary ionization density —> large time separation
(A~ 800 pm in 90%He, or ~ 30 ns)

low drift velocity = even larger time separation (v, ~ 2.5 cm/us)
low average cluster size (< N,,..on./Cluster> ~ 1.6)

low singe electron diffusion (< 110 um for 0.5 cm drift, or < 4.5 ns)
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Advantages of dN_/dx

N, number of primary ionizations follows Poisson

statistics Simple recipe

* independent from cluster size fluctuations

* insensitive to highly ionizing 6-rays High front end bandwidth (= 1 GHz)

* independent from gas gain fluctuations S/N ratio > 8
a2 mtrackinaHe— mix gives Ncl > 2400 (for a m.i.p.): High sampling rate (> 2 GSa/s)
Gde/dx/(de/dX) = Nd-:l'/2 <2.0% > 12 bit
potentially, a factor > 2 better than dE/dx 7 ‘
*  resolution scales with L5 (not L-237 as in dE/dx) . e
Further advantages of Helium bk :

d\ ® 957 heliu:

. low primary ionization density —> large time separation
(A~ 800 pm in 90%He, or ~ 30 ns)

*  low drift velocity = even larger time separation (v, ~ 2.5 cm/us)

* low average cluster size (< N, . ons/Cluster> ~ 1.6) o |

* low singe electron diffusion (< 110 pum for 0.5 cm drift, or < 4.5 ns) o |
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PID: analytical calculations vs full simulation
Which simulation?

Garfield++ can describe in detail the properties and the performance of a drift chamber single cell, but
it is not suitable to simulate a large-scale detector and to study collider events.

Geant4 can simulate elementary particle interactions with the material of a complex detector and
study collider events, but the fundamental properties and the performances of the sensible elements,
like the drift cells, have to be parameterized or "ad-hoc" physics models have to be implemented.

We have developed an algorithm, which uses the energy deposit information provided by Geant4, to
reproduce, in a fast and convenient way, the clusters density and the cluster size distributions
predicted by Garfield++.

A simulation of the ionization process in 200 drift cells, 1 cm wide, in 90% He and 10% iC,H, gas
mixture has then been performed both in Garfield++ and in Garfield-modeled Geant4.

Do the simulations confirm the prediction?

F. Cuna, N. De Filippis, F. Grancagnolo, G. Tassielli, Simulation of particle identification with
the cluster counting technique, arXiv:2105.07064v1 [physics.ins-det] 14 May 2021
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PID: full simulation vs analytical calculations

Particle separation from truncated mean dE/dx

Particle separation dN/dx
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(We are assuming a cluster counting efficiency of 100%).
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dN/dx: consider /K separation:

Garfield++ in reasonable agreement
with analytical calculations up to
20 GeV/c momentum, then falls
much more rapidly at higher
momenta.

Despite Geant4 uses the cluster
density and the cluster size
distributions from Garfield++, it
disagrees from Garfield++ and,
therefore, from the analytical
calculations also.



PID full simulation with cluster counting
Open questions:

1. Lack of experimental data on cluster density and cluster population for He based gas.
Particularly in the relativistic rise region to compare predictions.

2. Despite the fact that the Garfield++ model in GEANT4 reproduces reasonably well the
Garfield++ predictions, why particle separation, both with dE/dx and with dN/dx, in
GEANT4 is considerably worse than in Garfield++?

3. Despite a higher value of the dN/dx Fermi plateau with respect to dE/dx, why this is
reached at lower values of By with a steeper slope?

4. These questions are crucial for establishing the particle identification performance at
FCCee, CEPC and SCTF

5. However, the only way to ascertain these issues is an experimental measurement!
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beam test objectives
Beam test plans (two phases):

1. Establish the limiting parameters for an efficient cluster counting:

- gas gain saturation
- cluster density (by changing the gas mixture)
- space charge (by changing gas gain, sense wire diameter, track angle)

2. Demonstrate the ability to count clusters:

at a fixed By (muons at a fixed momentum) count the clusters by
- doubling and tripling the track length and changing the track angle;
- changing the gas mixture. tESt d 0 n e

3. In optimal configuration, measure the relativistic rise as a function of By, both in
dE/dx and in dN./dx, by scanning the muon momentum from the lowest to the
highest value (from a few GeV/c to about 250 GeV/c at CERN/H8).

4. Use the experimental results to fine tune the predictions on performance of cluster
counting for flavor physics and for jet flavor tagging both in DELPHES and in full

simulation
new beam test July 2022
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Test setup

schematic
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Test setup: advantages

* no need of external trackers: only interested in path length inside the drift
tube active volume

* no need to convert time to distance (just count clusters in the time domain)

* no need of internal tracking (time-to-distance and t, calibrations, alignment,
track finding and fitting algorithms, ...)

* no worry of multiple scattering (irrelevant for path length differences)

* no need of particle tagging in hadron beams: use only muon beams at
different momenta (different By)

e use selected commercial amplifiers neglecting power consumption

* use only fully integrated digitizers (WDB) for ease of readout
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Test setup: hardware

16 channels data acquisition board designed and used by 12cm x 6cm upstream and downstream scintillator tiles
the MEG2 experiment at PSI (L > e + ) (designed and used as timing counter of the MEG2
(credit to S. Ritt, Paul Sherrer Institute, Zurich, Switzerland) experiment at PSl) used in coincidence and readout by SiPM
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event display

top 4 channels trigger scintillators

e i

6 drift tubes (1 cm)

25/03/2022

3 drift tubes (2 cm)

2 drift tubes (3 cm)

vertical full scale 30 mV (gain 10) — horizontal scale 800 ns
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single electron pulse height [mV x 10]

space charge

no dependence of space charge

effects from the gas gain, no
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avalanche avalanche effects from the sense wire

separation separatio . . |
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Electron peak finding strategy based on derivatives of spectral function
Please, see details of the used algorithm in
B. D’Anzi

March 17, 2022, IHEP-INFN joint Meeting on cluster counting in drift chambers:
https://indico.ihep.ac.cn/event/16376/

>  Expected number of electron peaks =
O cluster/cm (M.1.P.) * drift tube size [cm] * 1.3 (relativistic rise)* 1.6 electrons/cluster * 1/cos(a)

>  Expected number of clusters =
O cluster/cm (M.I.P.) * drift tube size [cm] * 1.3 (relativistic rise)* 1/cos()

a = angle of the muon track w.r.t. normal to sense wire
 cluster/cm (mip) = 12 for 90He (18 for 80He) gas mixtures
drift tube size = 0.8 for 1 ¢cm (1.8 for 2 cm) drift tube
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Fermi plateau in He = 1.3 x m.i.p.
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Fig.1.- Ionization loss in helium. The theo-
retieal curves are normalized to the p-me-
sons with By < 30, and are calculated for
different values of the average ionization
potential for the mixture of gases in the
cloud chamber. Standard deviations are
indicated for a few of the experimental
points.
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<Ngjectrons/cluster> = 1.6
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Run:

Volt [V]

Electron peaks counting

run 99.root; Track angle(deg): 0° ; Gas mixture: 908Hel0%iC,H;, ; HV
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1 cm drift tubes
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Run:

Electron peaks counting

run 99.root; Track angle(degqg):

0° ;
tmpSignal_afterFit_Ch10_ev118
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90%Hel08iC,H;y ; HV

2 cm drift tubes
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Volt [V]

Electron peaks counting

— 1 cm drift tubes
Run: run 127.root; Track angle(deg): 60° ; Gas mixture:( 808He208iC,H;; ); HV = +20
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Expected 50%
more clusters
(and electrons)

with respect to
90%He - 10%iC4H4q
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N Poak aund - Ch &

90%He, 1cm, 0°

Electron peaks counting
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Entries

hintegInR_ch6

. Entries 502
i Mean V-ns/50Q 1.603
® Std Dev 1.758
14

12 90%He, 1cm, 0°

o N & o

Charge integral = 32 pCoul

32/74=0.8/1.8

Charge integral = 74 pCoul

hinteginR_ch11
14 Entries 268
Mean 3.707
2 Std Dev__ 4.399

90%He, 2cm, 0°
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\verage Number of Electrons / Expected Number of Electrons
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Electron peaks counting

Electrons Finding Efficiency 2 cm cell size Drift Tubes
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Track Angle (deg)

Electrons overcounting due to fake electron peaks in adjacent bins
(easily corrected in the clusterization algorithm)

Inefficiency for 2 cm drift tubes under investigation
Undercounting for a < 30° due to space charge effects
Undercounting for a > 45° due to high electron peaks density
(average 5 bins at 60°) = real inefficiency (can be corrected)
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Electron clustering

1. Association of electron peaks in consecutive bins (difference in time == 1 bin)
2. Contiguous electrons peaks compatible with the electrons diffusion time (2.5 ns
or 3 bins) are considered belonging to the same ionization cluster.

For them, a counter for electrons per cluster is incremented.
(Next, consider this cut a function of the first cluster drift time, according to the electron diffusion)

1. Position of the clusters is taken as the position of the last electron in the cluster.
(Next, position the cluster at the time of the electrons charge weighted average)

2. The distributions of the number of clusters must follow a Poisson distribution!

time distance between different cls time distance of electrons belongings to the same cluster
2 1

3 ] . . .
5 o) Garfield simulation

18.04
RMS 2.562
ICE_n10
6.497 f(t) = /7l +B e_t/rz
Py
1722012
14 01

M
RMS 18.84 35000

T1 describes time distance for
different clusters
T2 describes time distance for
same cluster
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Entries

Electron clustering
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Entries

10°

Electrons cluster density (90%He)
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<Ngjectrons/Cluster> = 1.6
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H. Fischle, J. Heintze and B. Schmidt

Experimental determination of ionization cluster size
distributions in counting gases

Nuclear Instruments and Methods in Physics Research
A301 (1991) 202-214

No recent
experimental measurement
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Cluster counting (Poisson fits) —
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———— TNPeaks.cstows
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Entries

Entries

Cluster counting (Gauss fits) — 2 cm, 45°
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hNPeaks_clust_ch10

N Cluster Peaks found - Ch 11

hNPeaks_clust_ch11

~ Entries 581
- Mean 26.89
~ Std Dev 6.624
= ¥2 I ndf 50.53 /39
- Prob 0.1023
Constant 38.22+2.19
Mean 26.81+0.26
== Sigma 5.544 = 0.209
C §=0/Vu=1.07
Expected Clusters: 39.7
= |—| Alpha angle (deg): 45.0
1 1 L L 1
0 10 20 30 40 50 60 70 80 90
Number of Clusters found
N Cluster Peaks found - Ch 12
hNPeaks_clust_ch12
= Entries 585
- Mean 31.16
[~ Std Dev 6.752
%2/ ndf 38.49/38
B Prob 0.4475
Constant 34.95 £ 2.07
Mean 30.97 £ 0.28
Sigma 6.298 + 0.271

25/03/2022

&=

o/vu=1.13

Expected Clusters: 39.7|

Alpha angle (deg): 45.0
L L
60 70

80 90
Number of Clusters found

@ — -
2 - Entries 585
] - Mean 27.84
- Std Dev 6.702
%2 I ndf 48.53 /41
Prob 0.1953
10 Constant 37.03+2.14
= Mean 27.71+0.26
- Sigma 5.796 = 0.227
- §=o/Vu=1.10
1
- Expected Clusters: 39.7}
B Alpha angle (deg): 45.0
- 1 1 1 1 1 A1 1 1
0 10 20 30 40 50 60 70 80 90
Number of Clusters found
N Cluster Peaks found - Ch 1 N Cluster Peaks found - Ch 11
“E Erires IR =T = —FNPeake cusLehTT ) —
jan 2680 HE = Vear 2784
= Std Dev 6.624 Std De 6.702
o b oz e Frn o
Consant 22,210 == Constant 37082214
wE tean 26812026 = Mean 27712026
“E Sigma 554420200 Sama 79520
=E-
- “E
= -
= Expected Clusters:30.] oE- Expected Clusers:30.]
E Alpha angle (deg): 45.0 E Alpha angle (deg): 45.0
0 £ £ * Ca ‘ s O 5 £ % & b . ‘

N Cluster Peaks found - Ch 1

3
Number of Clsters found

[ PNPeaks clstohiz )
Ervies ES
Mean 3116

d 67
2ol 3849738
Prob 0.4475
Constant 34952207

foan 3097 1028
Sigma 6298202

Expocted Clusters: 39.7]

Alpha angle (deg): 45.0

i
Number of Clsters found

g B
Number o Glstes ound

same plots
linear scale

F. Grancagnolo - CEPC Day

27




d Average Number of Clusters / Expected Number of Clusters

Clusters Finding Efficiency 1 cm cell size Drift Tubes

Cluster counting

Clusters Finding Efficiency 2 cm cell size Drift Tubes
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Same effects seen in the electron peaks counting (space charge and high
electron peaks density)

Full efficiency and Poisson distribution for 1 cm drift tubes

25-30% average inefficiency for 2 cm drift tubes (electron inefficiency)
Inefficiency may be cured by increasing the sampling rate (more bins per peak)
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Alternative counting algorithms



Running Template Algorithm

Define an electron pulse template based on experimental data

Raising and falling exponential over a fixed number of bins (Ktot)
Digitize it (A(k)) according to the data sampling rate
Run over Ktot bins by comparing it to the subtracted and normalized data

(build a sort of x2)
Define a cut on 2

Subtract the found peak to the signal spectrum

Iterate the search

Stop when no new peak is found

Normalized pulse

Example 1

AW Krise =3
00

0269
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0585 o0
039
0269 o0
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0102 om0
008

00 0000
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0,000

0,400

0,200

Example 2

Krise =5
Kfall =17
Ktot =21

1 =2 bin
T2 =8 bins

Search bins = Ktot = Krise + Kfall- 1
Norm. pulse shape = Alk), k=0, Ktot-1

Timension vectors

Signal spectrum
snewi) = Waveschannel ()
(corrected for baseline)
sigsnew(i) = Sigs
=0, Waves{channel), Pt

2)ktot

-1)°2)

ANorm(K) = A(K|*Norm
Chi2 = Chi2 + [F{K) ~ ANorm(K]"2/ sigNorm"2+sigF(k)"2)

67 8 91011121314151617181920
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Npeaks = Npeaks + 1

Peak(Npeaks) = maxrel
Ampl(Npeaks) = Flkise-1)

sighmpl(Npeaks) = sighlkrse-1)

Sigsnew(jmaxrel 1k - Krise 1) = Sigflk)

(at debugging stage)

Choose peak function A(k) and Krise and Kfall

Maximum Number of electron Npeaks = 500

Store in a temporary buffer the
pulse spectrum Snew(i) and
Its standard deviation SigSnew (i)

Initialize peak search
jmaxrel bin of presumed peak; jlast last possible bin

Search again after peaks subtraction

Loop over all bins of signal spectrum

Define raising or falling ramp Delta per bin and
the normalization factor of the presumed peak Norm
with their propagated errors sigDelta and sigNorm

Loop over Ktot bins of presumed signal peak

Peak function F(k) and its error sigF(k)
to be compared to the normalized peak function chosen
Chi square, Chi2, build up

Chi2 condition chicut for peak finding

Increment the number of peaks found Npeaks and
store the corresponding bin position jmaxrel
and the normalized amplitude Ampl and sigAmpl

Loop over Ktot bins of found signal peak

Current found peak subtraction
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Training model

Using slices of the
waveform as the inputs
Using LSTM (a variation of
RNN) as the network model
Output probabilities

background o

0

25/03/2022

05/

03}

02¢

0.1}

Peak finding with deep learning

. Powerful: “Learn” the characteristics of data automatically by the machine

Recurrent Neural Network (RNN):
. Internal loops = “memories”
. Powerful to handle time-sequence problems

Waveform Peak Finding:
. Can be adapted to a machine learning problem:
. Binary classification: “peaks” vs. “noises”
i Time-sequence data structure: appropriate for RNN
. Advantage and challenge by using ML
. Advantage: Make fully use of the waveform information, while derivative only rely on the rising-edge
. Challenge: Require excellent data/MC consistency

Waveform

signal LSTM

O Output probability (classifier)

50

' |
100 150

1 s liaaaly I L | P
200 250 300 350 400 450 500
Time (ns)
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Peak finding example with deep learning (toy MC)

RNN (LSTM) Derivative
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Black line: truth times (primaries and secondaries)

Peak detection ability with RNN is better than that with derivative
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Efforts on improving data/MC consistency

(1)

MC tuning:

* Noise model

*  Amplitude

* Peak rising-time

Data

e

0.14

0.12

0.

—

0.08

0.06

0.04

0.02

(1) (2) (3)
Tune MC base on Data @ Train network with MC Apply to Data

MC

g
&
&
g
:

MC is more consistent with data. But some effects are still need to be
investigated (e.g., space-charge).
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Conclusions

Particle identification via dE/dx has essentially made no progress since over 40 years.
Cluster counting may provide the long sought jump in performance.

Both analytical and montecarlo simulations suggest an improvement of a factor 2 of
dN/dx versus dE/dx.

Byproduct of the cluster counting technique is the cluster timing technique, which offers
improvements in the impact parameter resolution (directly coupled to transverse
momentum resolution) and allows for a precise event time-stamping.

Absolute performance of particle separation power in the relativistic region (crucial for
FCC-ee and CEPC) needs to be assessed with experimental measurements.

A strongly motivated beam test campaign has begun. So far, we have concentrated our
efforts in successfully demonstrating the ability to efficiently count ionization clusters.
Next step will be the experimental measurement of the cluster density and cluster size
distributions over the relativistic rise region, which will begin this coming summer at
CERN H8.
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