Quantum Simulation: from Quantum Matter to Gauge Theory

Hui Zhai

Institute for Advanced Study Tsinghua University

量子计算与高能核物理交叉前沿讲习班 华南师范大学 2022.11

Quantum Simulation of the PXP Model Two Realizations of the PXP Model: 1. Rydberg Atom Array 2. Lattice Gauge Simulator Physics in the PXP Model 1. Quantum Thermalization 2. Confinement-Deconfinement Transition 3. Quantum Spin Liquid How gauge theory picture helps understand quantum matter?

Two Realizations of the PXP Model

 $\hat{H} = \Omega \sum P_{i-1} \hat{S}_i^x P_{i+1} - \Delta \hat{n}_i$ i

Rydberg Atom

A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number

Rydberg Atom Arrays

Platform for Quantum Simulation and Quantum Computation

Rydberg Blockade

 $\hat{H} = \sum_{i} \left(\Omega \hat{S}_{i}^{x} - \Delta \hat{n}_{i} \right) + \sum_{ij} V_{ij} \hat{n}_{i} \hat{n}_{j}$

Rydberg Blockade

$$\hat{H} = \sum_{i} \left(\Omega \hat{S}_{i}^{x} - \Delta \hat{n}_{i} \right) + \sum_{ij} V_{ij} \hat{n}_{i} \hat{n}_{j}$$
$$V_{ij} = V \quad \text{for} \quad j = i \pm 1$$
$$V_{ij} = 0 \quad \text{otherwise}$$

Rydberg Blockade

$$\hat{H} = \sum_{i} \left(\Omega \hat{S}_{i}^{x} - \Delta \hat{n}_{i} \right) + \sum_{ij} V_{ij} \hat{n}_{i} \hat{n}_{j}$$
$$V_{ij} = V \quad \text{for} \quad j = i \pm 1$$
$$V_{ij} = 0 \quad \text{otherwise}$$

 $\mathcal{M} = \prod_{i} (1 - n_i n_{i+1})$ Prevent

PXP Hamiltonian

$$\begin{split} \hat{H} &= \sum_{i} \left(\Omega \hat{S}_{i}^{x} - \Delta \hat{n}_{i} \right) + \sum_{ij} V_{ij} \hat{n}_{i} \hat{n}_{j} \\ V_{ij} &= V \quad \text{for} \quad j = i \pm 1 \\ V_{ij} &= 0 \quad \text{otherwise} \\ \mathcal{M} &= \prod_{i} (1 - n_{i} n_{i+1}) \quad \text{Prevent} \quad \bullet \quad \bullet \\ \mathcal{M} \hat{H} \mathcal{M} \quad \bullet \quad \hat{H} &= \Omega \sum_{i} P_{i-1} \hat{S}_{i}^{x} P_{i+1} - \Delta \hat{n}_{i} \\ P_{i} &= 1 - n_{i} \end{split}$$

Quantum Simulation with Rydberg Atoms Array

2)

l

Physical charge

 $|\downarrow\rangle$

te Matter Site

Gauge Site

Gauge Site

 \uparrow

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_{l} \hat{b}_{l+1} + \text{h.c.} + m \hat{n}_{l} \right]$$

Lattice Schwinger Model

Local Conserved Quantity

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_{l} \hat{b}_{l+1} + \text{h.c.} + m\hat{n}_{l} \right]$$

Local Gauge Symmetry:

$$\hat{b}_l \rightarrow e^{i\theta_l}\hat{b}_l$$

$$\hat{S}_{l,l+1}^+ \to e^{-i\theta_l} \hat{S}_{l,l+1}^+$$

$$\hat{S}^+_{l-1,l} \to e^{-i\theta_l} \hat{S}^+_{l-1,l}$$

Conservation Quantity:

$$G_l = S_{l-1,l}^z + S_{l,l+1}^z + n_l$$

Local Conserved Quantity

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_{l} \hat{b}_{l+1} + \text{h.c.} + m \hat{n}_{l} \right]$$

Conservation Quantity:

$$G_l = S_{l-1,l}^z + S_{l,l+1}^z + n_l$$

Gauss's Law: $\nabla \cdot \mathbf{E} = \rho$

$$E_{l-1,l} = (-1)^l S_{l-1,l}^z \qquad Q_l = (-1)^l n_l$$

$$E_{l,l+1} - E_{l-1,l} = Q_l$$

Local Conserved Quantity

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_{l} \hat{b}_{l+1} + \text{h.c.} + m\hat{n}_{l} \right]$$

$$G_l = S_{l-1,l}^z + S_{l,l+1}^z + n_l$$

Lattice Gauge Realization of the PXP Model

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_{l} \hat{b}_{l+1} + \text{h.c.} + m\hat{n}_{l} \right]$$

Gauge charge

No need to read the matter site

Lattice Gauge Realization of the PXP Model

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_l \hat{b}_{l+1} + \text{h.c.} + m\hat{n}_l \right]$$

Gauge charge

Connected by spin flip

Lattice Gauge Realization of the PXP Model

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_{l} \hat{b}_{l+1} + \text{h.c.} + m \hat{n}_{l} \right]$$

Gauge charge

$$\hat{H} = \sum_{l} \left[\hat{P}_{l-1,l} \left(-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} + \text{h.c.} \right) \hat{P}_{l+1,l+2} - m(S_{l-1,l}^{z} + S_{l,l+1}^{z}) \right]$$

Gauge Conservation

Matter Field Mass

Rydberg Blockade

Physics in the PXP Model

1. Quantum Thermalization

Loss of initial state memory

 $|\Psi
angle$

 T, μ, \ldots

Quantum wave function

Unitary evolution

Thermal equilibrium

 $\langle \hat{\mathcal{O}} \rangle_{\infty} = \langle \rho_{eq}(E) \hat{\mathcal{O}} \rangle$

Local observable

Equilibrium Density Matrix of the Whole System

Sufficient Long Time Evolution

Loss of initial state memory

Munich Group, Science 2015

Eigen-state thermalization

$$\begin{split} |\Psi(0)\rangle &= \sum_{\alpha} a_{\alpha} |\alpha\rangle & \qquad |\Psi(t)\rangle = \sum_{\alpha} a_{\alpha} e^{-iE_{\alpha}t} |\alpha\rangle \\ \langle \hat{\mathcal{O}} \rangle_{\infty} &= \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \langle \Psi(t) | \hat{\mathcal{O}} | \Psi(t) \rangle dt = \sum_{\alpha} |a_{\alpha}|^{2} \langle \alpha | \hat{\mathcal{O}} | \alpha \rangle \end{split}$$

no Eigodicity; all eigenstates are thermal

$$\langle \alpha | \hat{\mathcal{O}} | \alpha \rangle = \langle \rho_{\rm mc}(E_{\alpha}) \hat{\mathcal{O}} \rangle$$

a function of energy only

 α

Volume-law of entanglement entropy

Harvard Group, Science, 2016

HZ, Ultracold Atomic Physics

Quantum Many-Body Scars

ARTICLE

doi:10.1038/nature24622

Probing many-body dynamics on a 51-atom quantum simulator

Nature 2017

Hannes Bernien¹, Sylvain Schwartz^{1,2}, Alexander Keesling¹, Harry Levine¹, Ahmed Omran¹, Hannes Pichler^{1,3}, Soonwon Choi¹, Alexander S. Zibrov¹, Manuel Endres⁴, Markus Greiner¹, Vladan Vuletić² & Mikhail D. Lukin¹

ARTICI

Probing many-body dynamics on a 51-atom quantum simulator

Hannes Bernien¹, Sylvain Schwartz^{1,2}, Alexander Keesling¹, Harry Levine¹, Ahmed Omran¹, Hannes Pichler^{1,3}, Soonwon Choi¹, Alexander S. Zibrov¹, Manuel Endres⁴, Markus Greiner¹, Vladan Vuletić² & Mikhail D. Lukin¹

uantum Many-Body

Scars

Nature 2017

Why This is Unusual?

ARTICLE

doi:10.1038/nature24622

Probing many-body dynamics on a 51-atom quantum simulator

Hannes Bernien¹, Sylvain Schwartz^{1,2}, Alexander Keesling¹, Harry Levine¹, Ahmed Omran¹, Hannes Pichler^{1,3}, Soonwon Choi¹, Alexander S. Zibrov¹, Manuel Endres⁴, Markus Greiner¹, Vladan Vuletić² & Mikhail D. Lukin¹

physics Many-Body Scar in PXP Hamiltonian

Weak ergodicity breaking from quantum many-body scars

Nature Physics 2018

C. J. Turner¹, A. A. Michailidis^{1,2}, D. A. Abanin³, M. Serbyn² and Z. Papić¹*

Many-Body Scar in PXP Hamiltonian

Significantly low entanglement entropy

Many-Body Scar in PXP Hamiltonian

Z2 state cannot thermalize

Phase Diagram of Lattice Schwinger Model

$$\hat{H}_{\text{eff}} = \sum_{l} \left[-\frac{\tilde{J}}{2} \hat{S}_{l,l+1}^{+} \hat{b}_{l} \hat{b}_{l+1} + \text{h.c.} + m\hat{n}_{l} \right]$$

 $m \to \infty$

 $m \to -\infty$

Matter sites occupied

 $\begin{array}{c|c} & & & & & \\ \hline \\ |\uparrow\rangle & & |\downarrow\rangle & & |\uparrow\rangle & & |\downarrow\rangle & & |\uparrow\rangle & & |\downarrow\rangle \\ \hline \\ & & & & & \\ \hline \\ |\downarrow\rangle & & |\uparrow\rangle & & |\downarrow\rangle & & |\uparrow\rangle & & |\downarrow\rangle & & |\uparrow\rangle \end{array}$

Matter sites vacuum

m

Z2 Symmetry Breaking Ising Transition
Phase Diagram of Lattice Schwinger Model

 $\left|\downarrow\right\rangle$

Matter sites occupied

2N)

Matter sites vacuum

USTC Nature 2020

Driving Scars to Critical

Prediction of Ising CFT

Prediction of Ising CFT

PXP Model

Transverse Field Ising Model

Free Fermion States

Thermalization and Criticality

Experimental Observations

Interrelated Thermalization and Quantum Criticality in a Lattice Gauge Simulator

arXiv: 2210.17032

Precise Determine the Quantum Critical Point

Precise Determine the Thermalization Value

From Ground State to Excitations

From Ground State to Excitations

From Ground State to Excitations

Ferromagnetic state of dressed spins

$$\hat{\eta}_i^{\dagger}|\mathrm{GS}\rangle =$$

 $\hat{\eta}_i^{\dagger} \left(u \right| \Uparrow \rangle_i + v | \Downarrow \rangle_i \right) = -v | \Uparrow \rangle_i + u | \Downarrow \rangle_i$

Spin wave

Quantum Phase Transition

$$\hat{H} = \Omega \sum_{i} P_{i-1} \hat{S}_i^x P_{i+1} - \Delta \hat{n}_i$$

Quantum phase transition

Physics in the PXP Model

1. Quantum Thermalization

2. Confinement-Deconfinement Transition

Topological Angle

What is Missing ?

Topological Angle

Probe Confinement-Deconfinement

Confinement-Deconfinement Transition

Confinement-Deconfinement in the PXP Model

$$\hat{A}_{l} = -\hat{S}_{l-1,l}^{z} - \hat{S}_{l,l+1}^{z} + \bar{S}_{l-1,l}^{z} + \bar{S}_{l,l+1}^{z}$$

$$\mathcal{G}(r,t) = \sum_{l} \langle \Psi(t) | \hat{A}_{l} \hat{A}_{l+r} | \Psi(t) \rangle$$

Physics in the PXP Model

- Quantum Thermalization
 Confinement-Deconfinement Transition
- 3. Quantum Spin Liquid

Quantum Spin Liquid with Rydberg Atom Arrays

RESEARCH

TOPOLOGICAL MATTER

Probing topological spin liquids on a programmable quantum simulator

G. Semeghini¹, H. Levine¹, A. Keesling^{1,2}, S. Ebadi¹, T. T. Wang¹, D. Bluvstein¹, R. Verresen¹, H. Pichler^{3,4}, M. Kalinowski¹, R. Samajdar¹, A. Omran^{1,2}, S. Sachdev^{1,5}, A. Vishwanath^{1*}, M. Greiner^{1*}, V. Vuletić^{6*}, M. D. Lukin^{1*}

Rydberg Blockade

Rydberg Blockade

Quantum Spin Liquid in Rydberg Atom Arrays

RESEARCH

TOPOLOGICAL MATTER

Probing topological spin liquids on a programmable quantum simulator

G. Semeghini¹, H. Levine¹, A. Keesling^{1,2}, S. Ebadi¹, T. T. Wang¹, D. Bluvstein¹, R. Verresen¹, H. Pichler^{3,4}, M. Kalinowski¹, R. Samajdar¹, A. Omran^{1,2}, S. Sachdev^{1,5}, A. Vishwanath^{1*}, M. Greiner^{1*}, V. Vuletić^{6*}, M. D. Lukin^{1*}

Science 2021

Spin Liquid: A quantum superposition of exponentially many spin configurations.

Advantage of Quantum Simulator: Direct Probe Topological Order (= Long Rang Coherence)

Number Parity of Rydberg Atoms along the Loop

Advantage of Quantum Simulator: Direct Probe Topological Order (= Long Rang Coherence)

Coherence between Different Configurations

Quantum Many-Body State of Spin Liquid

$$\hat{H}_{\text{LGT}} = \sum_{\langle ij \rangle} -\Omega \left(\hat{S}_{\langle ij \rangle}^{-} \hat{f}_{i}^{\dagger} \hat{f}_{j}^{\dagger} + \text{h.c.} \right) - \Delta \hat{n}_{\langle ij \rangle}$$
$$|\text{QSL}\rangle = \frac{1}{\mathcal{N}} \prod_{\langle ij \rangle} \left(u + v \hat{f}_{i}^{\dagger} \hat{f}_{j}^{\dagger} \hat{S}_{\langle ij \rangle}^{-} \right) |\text{vac}\rangle$$
$$|\text{vac}\rangle = |0\rangle \otimes |\uparrow\rangle^{\otimes N}$$

Very efficient way to represent superposition

Recover two limits of positive and negative detuning

Automatically satisfy the constraint

BCS wave function possesses Z2 topological order

Quantum Many-Body State of Spin Liquid v Soability 0.0 8.0

$$|\text{QSL}\rangle = \frac{1}{\mathcal{N}} \prod_{\langle ij \rangle} \left(u + v \hat{f}_i^{\dagger} \hat{f}_j^{\dagger} \hat{S}_{\langle ij \rangle}^{-} \right) |\text{vac}\rangle$$
$$|\text{vac}\rangle = |0\rangle$$

Comparing with exact diagonalization

Wave function overlap

Energy difference

-2

Evidence of Quantum Spin Liquid

without any fitting parameter

 $\Delta X^2 \equiv \langle \hat{X}_{\text{close}} \rangle - \langle \hat{X}_{\text{open}} \rangle^2$

Yanting Cheng, Chengshu Li and HZ, arXiv 2021

 $\tilde{t} \approx 8 2 I^2 / I \approx 70 \, \text{Hz}$

References and Collaborators

- **D** Zhiyuan Yao, Lei Pan, Shang Liu and HZ, PRB 2022
- Lei Pan and HZ, PR Research 2022
- Yanting Cheng, Shang Liu, Wei Zheng, Pengfei Zhang and HZ, PRX Quantum 2022
- Yanting Cheng, Chengshu Li and HZ, arXiv 2021
- **USTC Experimental Team + Tsinghua Theory, arXiv 2022**

Thank you very much for your attention !