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Outlines

Simulation methods of general quantum circuits
o Full amplitude
e Single amplitude

e Approximate simulations: MPS, neural networks, path
integrals

e Simulation of stabilizer circuits
Simulation of Google's Sycamore quantum circuits
e The big-batch method

e The sparse-state method



Simulation of quantum circuits

Com

outing amplitudes

-ull amplitudes

e Single amplitude

Computing expectations

e Energy expectations

(VQE, QAOA)

Sampling problem

e Sycamore problem
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Quantum circuits
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e Start from the initial state
e Applying unitary operators

Full-amplitude simulation: store and update the state vector



States and Gates are tensors
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Each dimension of the state vector is independently operated



States and Gates are tensors

Array of qubits

https://ai.googleblog.com/2018/05/the-question-of-quantum-supremacy.html



Diagram notation of tensor networks

¢ & b 4 ¥

scalar vector matrix 3-way tensor 4-way tensor
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tensor contraction tensor contraction

Only Linear operations !!!



Tensor networks in physics:
imposing prior of physical wave functions
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In Physics Out of Physics Diagram

|
grouping of indices | unfolding, matricization % — @
|
splitting of indices tensorizing ?

tensor train
decomposition

periodic boundary tensor chain L‘? ~ o~ o~ A ?J
TTTT

matrix product states

MPS decomposition

hierarchical Tucker
tree tensor networks .
decompostion

single-site DMRG alternating least square

modified alternating least
square

two-site DMRG
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Finsum notations of tensor network contractions

C

A B
¢ = einsum(A,B,"},}") c=A-B &—0 = O

C = einsum(A,B,”j,jk->k”)  C = AB W = R

D = einsum(A,B,C.”ii,ikk") D = ABC Qj @ — :>P\

Space complexity: the dimension of the largest tensor

Time complexity: product of dimensions of all unique indices



Computational complexity

Time complexity

: A . :
C = A]BJ d] ¢ = A B OJ' d. JO - O
j=1 ]
d - .
k= ZAZJB]k diCl}dk C=AB L4 -
j=1 Idl dkk d; dl;c
d; A B C D
D, = A;B;C 7O
B Euncs dddd, p=ssc $réd = A
i [ d dl

Space complexity: the dimension of the largest tensor

Time complexity: product of dimensions of all unique indices



Automatically detecting structures in the data

[ 0.000, 0.100, 0.199, 0.296, 0.389, 0.479, 0.565, 0.644, 0.717, 0.783,
0.841, 0.891, 0.932, 0.964, 0.985, 0.997, 1.000, 0.992, 0.974, 0.946,
0.909, 0.863, 0.808, 0.746, 0.675, 0.598, 0.516, 0.427, 0.335, 0.239,
0.141, 0.042, -0.058, -0.158, -0.256, -0.351, -0.443, -0.530, -0.612,

-0.688, -0.757, -0.818, -0.872, -0.916, -0.952, -0.978, -0.994, -1.000,
-0.996, -0.982, -0.959, -0.926, -0.883, -0.832, -0.773, -0.706, -0.631,
-0.551, -0.465, -0.374, -0.279, -0.182, -0.083, 0.017, 0.117, 0.215,

0.312, 0.405, 0.494, 0.578, 0.657, 0.729, 0.794, 0.850, 0.899, 0.938 ]

10° data points in a vector
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Automatically detecting structures in the data
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Automatically detecting structures in the data
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Automatically detecting structures in the data

[ 0.000, 0.100, 0.199, 0.296, 0.389, 0.479, 0.565, 0.644, 0.717, 0.783,
0.841, 0.891, 0.932, 0.964, 0.985, 0.997, 1.000, 0.992, 0.974, 0.946,
0.909, 0.863, 0.808, 0.746, 0.675, 0.598, 0.516, 0.427, 0.335, 0.239,
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-0.996, -0.982, -0.959, -0.926, -0.883, -0.832, -0.773, -0.706, -0.631,
-0.551, -0.465, -0.374, -0.279, -0.182, -0.083, 0.017, 0.117, 0.215,
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Two problems

Tensor decomposition (Design / Learn a circuit)
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Tensor contraction (Simulate a circuit)
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Operator

Gate(s)

Matrix

Pauli-X (X)
Pauli-Y (Y)
Pauli-Z (Z)
Hadamard (H)
Phase (S, P)

7/8 (T)

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP
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Gate composition
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Parallel operations
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Full-amplitude simulation: the Schrodinger algorithm
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The Schrodinger algorithm
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Each dimension of the state vector is independently operated



The Schrodinger algorithm
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- Permute+ reshape the tensor to a matrix; reshape the gate to a matrix;
apply matrix multiplications

- Use einsum, tensordor ...



The Schrodinger algorithm

|l//> Rank > 1




The Schrodinger algorithm

| y) Rank > 1




The Schrodinger algorithm

| y) Rank > 1



The Schrodinger algorithm

| w) Rank = 4



The Schrodinger algorithm
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#qubits

10

20

30

40

50

53

Space dimension

Space complexity

210 = 1024 16 K bytes
220 — 60536 16 M bytes
230 = 1073741824 16 G bytes
240 = 1099511627776 16 T bytes

2°0 = 1125899906842624 16 P bytes
223 = 9007199254740992 128 P bytes
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Storage Device

Laptop
Cluster

Supercomputer

All hard disks of
supercomputer



The Schrodinger-Feynmann algorithm
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The Schrodinger-Feynmann algorithm
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The Schrodinger-Feynmann algorithm




The Schrodinger-Feynmann algorithm




The Schrodinger-Feynmann algorithm
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The Schrodinger-Feynmann algorithm




The Schrodinger-Feynmann algorithm




The Schrodinger-Feynmann algorithm

- en e
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Problem of the Schrodinger-Feynmann algorithm:
Complexity grows exponential with number of cuts
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MPS algorithm
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MPS algorithm
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MPS algorithm

|l//> Rank > 1




MPS algorithm

| y) Rank > 1




MPS algorithm
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MPS algorithm

| w) Rank = 4



Canonical forms of MPS
Analogous to the Tucker decomposition and HOSVDs, MPS has the

benefits of orthogonality.
TPTeee 3=

i

Benefits

* Fixed gauge, no ambiguity

» Easy norm computation

» Easy expectation/
correlation computation

!
3

 Always good conditioned
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Problem of MPS simulation
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Results of MPS simulations of 2D circuits with CZ gates

PHYSICAL REVIEW X 10, 041038 (2020)

Featured in Physics

What Limits the Simulation of Quantum Computers?

Yiqing Zhou "% E. Miles Stoudenmire®,” and Xavier Waintal®’
lDepartmem‘ of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

3Univ. Grenoble Alpes, CEA, IRIG-Pheligs, 38054 Grenoble, France
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Results of MPS simulations of 2D circuits with CZ gates

PHYSICAL REVIEW X 10, 041038 (2020)

What Limits the Simulation of Quantum Computers?

Yiqing Zhou ,'? E. Miles Stoudenmire®,” and Xavier Waintal®*

lDepartment of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
3Univ. Grenoble Alpes, CEA, IRIG-Pheligs, 38054 Grenoble, France
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import numpy as np

a = np'arraY([[llololO]I[OlllorO]l[OrOlllO]l[010101_1]])
a.reshape([2,2,2,2])

a.transpose([0,2,1,3])

b.reshape(4,4)

, V. = np.linalg.svd(b)
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Results of MPS simulations of 2D circuits with fSim gates

1 0 0) 0
| 0 9 —ising 0
fSim gate has a flat prior tS1m(0, @) = | _Cl-ossin(g CZOS;I; 0
0 0 0 e
+ + Iz ’
(10 0 0 ) (1 0 0  cosf) ,
0 cosf —isinfd O 0 0 —isind 0 |Singular values|
0 —isind cosd O 0O —isin6 0 0 [1,1, sinz(Q), Sinz((g)]
L0 0 0 e ,cos 6 0 0 e

from sympy import *

theta = symbols('theta')

phi = symbols('phi')
a=Matrix([[1,0,0,cos(theta)],[0,0,I*sin(theta),0],[0,I*sin(theta),0,0],[0,0,0,exp(-I*phi)]])
a.eigenvals()



Results of MPS simulations of Sycamore circuits
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Our results



Results of Group MPS simulations of Sycamore circuits
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Neural network simulation of quantum circuits

H —P—e VX —e H L
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Tensor network (e.g. MPS) states:
low-rank, weak entanglements
efficient and accurate to compute inner product

Neural network states
high-rank
difficult to compute inner products, need sampling
variational optimization with a loss function D(|y), A |y))

M. Medvidovic and G. Carleo, npc Quantum information 7, 1 (2021)
B. Jonsson, B. Bauer, G. Carleo, arXiv:1808.05232 (2018)



Neural network simulation of quantum circuits
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S. Li, F Pan, P. Zhou, PZ, PRB 104, 075154 (2021)
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2D Tensor Network

S. Li, P. Zhou, F. Pan, PZ, Phys. Rev. B 104, 075154 (2021)



Neural network simulation of quantum circuits
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Tensor network (e.g. MPS) states:
low-rank, weak entanglements
efficient and accurate to compute inner product

Neural network states
high-rank
difficult to compute inner products, need sampling
variational optimization with a loss function D(|y), A |y))

M. Medvidovic and G. Carleo, npc Quantum information 7, 1 (2021)
B. Jonsson, B. Bauer, G. Carleo, arXiv:1808.05232 (2018)



Tensor network contraction and Path Integral
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Tensor network contraction and complex Ising model

0) — H —P—9 VX—e H <
0) — H+—e T—e HIH <
= Bl P D At
0) — H VY —e I H H <

Final state = Marginals of complex Ising model

Single amplitude (/| s, ) = Partition function of complex Ising model



Final state and statistical mechanics model
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Classical variational / sampling methods ?

S? 1‘ 2’ 2‘
0 51 51 51
5 @ o @ 9
; s21 522 sz'
oo 1o Koo,
S S S
4 4 4

Energy functions are difficult to compute.
Sign problem for sampling hidden variables.

No variational principles for joint amplitude of all variables.



Trading fidelity with complexity

Using approximate state, e.g. MPS

Sampling from a mixed distribution ( a small portion from
true distribution + a large part from pure noise)

. |
o Noisystate: p = fly){wl+ 1 -f)—

e 2000 bit strings with from |y){yw| and 998000 from
uniform distribution

Summing over a fraction of paths in the path-integral
representation.



Simulation of stabilizer circuits

Stabilizer circuits:

e (Gates are

( )

CNOT C, =

0
8 . Create entanglements
|

0
1
0
0

oSO O =

\ )

Hadamard H = L (
V2

0
0
1
0
1

1

{ 1> . Create superpositions

1 O

Cphase S = (O i

>: add complex phases

e Stabilizer states from |000---0)
Creates complex entanglements, but not universal
Gottesman-Knill Theorem: Stabilizer circuits can be simulated in polynomial time:

storing stabilizers (generators of the stabilizer sub-group) rather than the
state



Stabilizers: single qubit

(1 0\ _ (0 1Y\ , _ -i\ ,_ (1 0
=0 9)x=(00) = () 7= 5)
X2=Y2=Zz=12=l

XY=, YX=—-14,YL=1X,2Y =—1X,ZX =1Y, X/ =—1Y

o= (o) =) -7 (1) 13 ()

Z|0) =|0): Z stabilizes |0), X|+)=|+): Xstabilizes | +)

Stabilizer group for |0) is {1,Z}=(Z)
Stabilizer group for | + ) is {1, X}=(X)



Stabilizers: two and more qubits

1
GHZ state: |¢.) =——(]00) + | 11))
+ 73 ) )

Z122|¢+> — |¢+>r X1X2|¢+> — |¢+>r _Y1Y2|§b+> — |¢+>r 11]2|¢+> — |¢+>

Stabilizer group for |¢.)is {ILXX,ZZ, - YY} = (XX, ZZ)
1

Stabilizer group for |¢_) = —(]00) — | 11)) is
2

(II, — XX,ZZ, YY) = (—XX, ZZ)

The n-qubit stabilizer states can be determined by a stabilizer
group of size 2", which has n generators.

Rather than storing the state vector |¢) with 2" parameters,
storing the n stabilizers.



Stabilizers: check matrix representation

Stabilizers X checks Z checks
T f0000 00000
"""""""""""" zm . o0000 | 10000
"""""""""""" v ofoo0  o0fo00
"""""""""""" Xz . ooto0 | 00010

[ rows, each row indicate a stabilizer
n columns, corresponding to n qubits

There is also a overall phase (not shown here)



Stabilizer circuits

Now consider the state after a unitary operator U applied
on an initial state |yw) which is stabilized by group S with

gESs, glw) =|w).
Ulw) = Ug|y) = UgU'Ug |y) = (UgU" (U |y))
o UglU" stabilizes U|y).

o If UgU"is also a Pauli operator, U|y) is determined
by stabilizers specified by UgU".

* No need to store U|y), just trace the change of §



Stabilizer circuits

For example:

Hadamard gate H.
HXH'=Z7: HYH' =—-Y: HZH' =X

Controlled-Not gate U:
C.X\C! =X, Xy; CX\Cl=X; CZCl=2; CZ,Cl =77,

Phase gate S:
SXST=Y: SZS"T=7Z.

Actually, {H, C_, S} generates N(G,), the normalizer of G, Pauli group
on n quits

i.e.forue(H,C,S), UGU' =G,

N(G,) is also known as Clifford group



Simulation of stabilizer circuits

Stabilizers X checks Z checks
~ xam 10000 00000
~ zm o000 | 10000
"""""""""""" v ofoo0  o0fo00
"""""""""""" Xz oot . 00010

To apply H to the i'" qubit:
* Swap the i row of the X check to the Z check
To apply S to the i" qubit:
* Bitwise XOR the i row of the X check into the i row of the Z check
To apply C, from the i qubit to the j™ qubit:
» Bitwise XOR the i row of the X check into the j™ row of the X check
* Bitwise XOR the j row of the Z check into the i row of the Z check

Measurements can also be conveniently (commute or anti-commute with stabilizers).



Google's Sycamore circuits

nature

Explore content v  About the journal v  Publish withus v

nature > articles > article

Article | Published: 23 October 2019

Quantum supremacy using a programmable
7 superconducting processor

Frank Arute, Kunal Arya, ... John M. Martinis ~+ Show authors

Nature 574, 505-510 (2019) | Cite this article

878k Accesses | 1479 Citations | 6167 Altmetric | Metrics

Suln

X X X > X X _
D0 DD ¥ 53 qubits, 20 cycles
X, oxo 0"0 0"0 oxo 0"0
xoxoxoxoxoxoxoxoxoxoxox VX = 1 [ 1 —i] ST = 1 {1 _1] W = 1 [ 1 —\/'1
oxooxooxooxooxoox VAR “ 2l 1) T VAV
AN AN AN ANAY
X, 0"0 0"0 0"0 0"0 0"0 i 1
% 5% 5 5 % L0 0 0 -
xo oxo oxo oxo oxo oxo £Sim(©, ) — 0 cosf —isind O 1 g
x Qubit @ Adiustable coupler ’ - 0 —1 sin H COS 9 O g
0 : -

0 0 e '

5 Z3 |-

>0

Q

n

2

e Zy -
e



Single qubit gates of Sycamore

Each one is a z/2-rotation around an axis lying on the equator of the Bloch sphere.
Up to a global phase, the gates are

1 (1 —4
Xl/QERX(ﬂ'/z):E |:_Z 1- ,
1 1 —1 single-qubit Clifford gates
Yl/2ERy(ﬂ'/2): L ,
V2l 1]

W2 = Ry y(n/2) = % [\/_7 _ﬂ non-Cliford gate.

= (X+Y)/V2.



Quantum supremacy

A specific computational task

e No matter whether it is “useful”
Beyond the capabilities of classical super-computers
In the NISQ era:

e Noisy (no error correction)

e (Circuits are not so deep

e Fidelity of gates are high



Quantum supremacy

Aaronson and Chen'’s conjecture:

A random circuit U with n qubits
and depth ~4/n, no classical
algorithm can guess if

BQP

0" U|0") > Median ((Onl UlO”))

With probability % + 0Q2™)

Easy

S Aaronson, L Chen, arXiv:1612.05903


https://scholar.google.com/citations?user=T_OhvOsAAAAJ&hl=zh-CN&oi=sra

Statistical Mechanics
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Statistical Mechanics

s—rL-p PP LrLLL et

P(S) =~ PO 7= zsje—/ms)
e Estimating the free energy

e Computing observables /
order parameters

e Sampling




Tensor network for Statistical Mechanics

R I S MU MRS o

Any discrete probability distribution is a tensor,
1 1 ~
P(S)= —e PES) = _p
(8)=—e ~

decomposed using tensor networks.

Computing normalization of a discrete probability distribution
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Tensor networks for the Ising spin glasses

ES) ==Y J;SS— ) I

(&)

o—l—Oo—l OO J _J
e’ e Vi
| N N - <e—Jij eJJ>
o—i i O
Ef= =1 | || | . ,
Oo—ill—O——0O0—oO . —0Gh.
1—+—1 = eﬂhl 2—+—2 = € ﬁhl
H || H H 1 ’)

all other elements are O



TN Contraction

—  p)

it




Stat. Mech. — Quantum Computer Simulation
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Partition function of stat. mech. with complex interactions

single amplitude computation of quantum circuit



Random circuits

For a random circuit U with gates drawn randomly from
universal set

271
. Final state [w) = UI0) = ) w(s)|s)
=1

o Probability distribution  P,(s) = | {s;|w) |* = |w(s) |?

 Both real and imaginary part of y(s,) are uniform
random variables on a 2" Hilbert space with mean O
and variance 27"

1071

1072

e Porter-Thomas distribution
PrOb(Np) — e_Np Wlth N — 2n 10-3

Prob(Np)

1074




Google's Quantum Supremacy experiments

nature
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Quantum supremacy using a programmable
superconducting processor

Frank Arute, Kunal Arya, ... John M. Martinis ~+ Show authors
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Google's Sycamore circuits

Fig courtesy: Huang et al 2020



Two kinds of circuits
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Pattern of Simplifiable circuits

Arute et al, Nature 2019



Error model of Google’s circuits

» all errors in the evolving quantum state may be
characterized by a set of localized Pauli errors (bit-flips or
phase-flips)

» discrete and probabilistic
» system fidelity is well predicted by a simple model in
which the individually characterized fidelities of each gate

are multiplied together

—>a predictive uncorrelated error model up to a Hilbert
space of size 2°3



Cross-entropy benchmarking fidelity, 7,

Error model of Google’s circuits

Classically verifiable b Supremacy regime
10°¢
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Number of qubits, n
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Fidelity measure

Not possible to output the (noisy) final state | ¢)

e Quantum device can only sample from it

e Not possible to compute the fidelity | (y|¢) |
Approximate estimates:

o KL divergence

e Cross entropy

e Logarithm cross entropy

e Linear cross entropy



Entropy

ly) = U|0) is the final state of the circuit U
P, (s) = | {(s|w)|* = |w(s)|* is the distribution of bitstring s

m samples S = {s;, s,, .-+, 5, }are drawn from P (s).
The joint probability of generating S is

P(S) = HP(S)

And log P(S) = 2 log P(s;) = — mH(P,)) + O(m'?)
=1
where

"
H(Py) = — ) Py(splog Py(s) is the entropy of Py,
i=1



Cross Entropy of the true distribution

For the true output distribution of the random circuit U
with a sufficient depth.

The prob. Follows the Porter-Thomas distribution
Prob(Np) = =P

The entropy is computed as

&)

2]’[
H(Py) = - ZPU(Si)IOgPU(Si) = = J dp IOgPNze_Np =logN—-1+y
i=1 0

y ~ 0.577 is the Euler's gamma constant.



Cross Entropy of the generation distribution

For a generation distribution g(s) (given e.g. by a classic
algorithm) where m samples S = {s,, s,, ---,5,,} are drawn from.

The probability of observing samples S on the circuit U

Prob($) = [ | Pu(s)

i=1 -

log Prob(S) = Z log P, (s) = — mH(q, P,,) + O(m'?)
=1
2n
H(g,P,) = — Z g(s)log P, (s)) :cross entropy between g and P,

=1

2I’l
e.g. H(qni- Pv) = — Z 27" log Py (s;) =logN+y =H,
= H(P,) =logN —1+y

Notice that



Cross Entropy and the KL divergence

o
H(q, Py) = — Z q(s)log Py(s;)
=1

21 21 2"
= = ( Z g(splog Py(s;) — Z q(splog g(s;) + Z q(s;)log Q(Si)>
=1 =1 =1

21 2"
= = ( Z q(s)log Py (s;) — log g(s;)] + Z q(s;)log Q(Si)>
=1 =1

= — Dy + H(q)
Dy, =H(q)—H(g,P,) >0
= H(q, P,) < H(qg)



Cross Entropy Benchmark

Use difference of Cross Entropy to define how well the
generation distribution ¢(s) can predict the output of the
circuit U

AH(q) = Hy — H(g. Py)

= Z (Q(Si) — %) log Py(s;)

e (0 for uniform distribution g ;i

o | for true distribution P, (s)



Cross Entropy Benchmark (XEB)

Logarithm XEB

FlogXEB = <10gN10g PU(S»Q +7
= ). q(s)logN logp(s) +7

se{1,0}"

1
N — 2 log N log p;(s) + 7y

m

s~q
10° : :
. o Linear XEB
Llnear XEB X X  Logarithmic XEB
B "
n %10_1 " = 5
Fxep = 2(py(s)), — 1 £ e,
v R
__ An 2 L
=2 Z qS)py(s) =1 2,
X
se{1,0}"

"
N Z pU(S) — 1 10796 15 20 25 30 35 40 45 50 55

m Number of qubits, n

§~q

Arute et al. Nature 2019



Cross-entropy benchmarking fidelity, 7, .,

Classically verifiable b Supremacy regime
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a Schrodinger Algorithm b Schrodinger-Feynman Algorithm c Schrédinger-Feynman Algorithm

Memory requirement Memory requirement Memory requirement
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FIG. S50. Scaling of the computational cost of XEB using SA and SFA. a, For a Schrodinger algorithm, the limitation
is RAM size, shown as vertical dashed line for the Summit supercomputer. Circles indicate full circuits with n = 12 to 43
qubits that are benchmarked in Fig. 4a of the main paper. 53 qubits would exceed the RAM of any current supercomputer,
and is shown as a star. b, For the hybrid Schrodinger-Feynman algorithm, which is more memory efficient, the computation
time scales exponentially in depth. XEB on full verifiable circuits was done at depth m = 14 (circle). ¢, XEB on full supremacy
circuits is out of reach within reasonable time resources for m = 12, 14, 16 (stars), and beyond. XEB on patch and elided
supremacy circuits was done at m = 14, 16, 18, and 20.

Arute et al, Nature 2019



Simulation methods

Full amplitudes:

e Storing full state-vector [Yao.jl, Qiskit, Qulacs, Cirg...]

|0) H—P VX| H— <
e Schrodinger-Feynmann T T T

|0) H T T l i HH— <
e MPS[PRX 10, 041038 (2020)] 0) — H l T SV I H -~

|0) H VY l HH <

Single/batch amplitudes:
e PEPS based / QuickBB order (single amplitude)

e Cotengra (single amplitude)

Alibaba ACQDP (64-amplitude batch)

Big-batch method [arXiv:2103.03074]
e Recursive multi-tensor contraction [aXiv:2108.05665]

e Sparse-state method [arXiv:i2111.03011]



Full amplitude simulations

Once you can store the state-vector, you can simulate the
circuit with an arbitrary depth.

Because the tree width of the 3D graph
Is influenced heavily by the size of the boundary



Full amplitude simulation: exponential space complexity

H —P VX H— < Leveraging Secondary Storage to Simulate Deep 54-qubit
Sycamore Circuits
H T H— =<
Edwin Pednault*!, John A. Gunnels', Giacomo Nannicini!, Lior Horesh', and Robert
l Wisnieff!
H T N H — /7< 'IBM T.J. Watson Research Center, Yorktown Heights, NY
H VY H— =< 2
S — P S — S
Disk All-to- 5Q Tensor Contrac-
trasfers alls kernels ranks tion Compute % of
perdisk | perdisk | perdisk per Num cost tot. time total Achieved
Tensor slice slice slice socket gates FLOPs (days) time PFLOPS
1 0.000977 28 28 84 0.002082 0.08% 0.0308
2 0.000977 25 27 84 0.001859 0.07% 0.0173
Contraction 31 1.181-102% | 0.117058 4.59% 116.7304
33 16 32 63 0.010658 0.42% 18.4865
34 | 6 32 23 0.003997 0.16% 17.9975
3.5 1 8 32 26 0.005329 0.21% 15.2587
Disk write | |
Disk read | |
44 11 32 49 0.007327 0.29% 20.9141
4.5 | 10 32 45 0.006661 0.26% 21.1275
Disk write 1 1
Disk read 1 1
55 9 32 35 0.005995 0.24% 18.2583
5.6 1 7 32 21 0.004663 0.18% 14.0850
Disk write 1 1
Subtotals
Compute 120 1.181-10%2 | 0.165631 | 6.50% 87.4462
All-to-alls 9.001953 .| 0.487725 19.13%
Disk I/O 5 1.896296 | 74.37%
Total 5 9.001953 120 32.67243 | 430 2.549652 | 100.00% | 87.4462




Tensor network methods

Simulating quantum computation by contracting tensor networks

Igor L. Markov! and Yaoyun Shi?

Department of Electrical Engineering and Computer Science
The University of Michigan
2260 Hayward Street
Ann Arbor, MI 48109-2121, USA
E-mail: {imarkov|shiyy}@eecs.umich.edu

Abstract

The treewidth of a graph is a useful combinatorial measure of how close the graph is to a tree. We prove that
a quantum circuit with 7' gates whose underlying graph has treewidth d can be simulated deterministically in
790 exp[O(d)] time, which, in particular, is polynomial in T if d = O(log T). Among many implications,
we show efficient simulations for log-depth circuits whose gates apply to nearby qubits only, a natural
constraint satisfied by most physical implementations. We also show that one-way quantum computation of
Raussendorf and Briegel (Physical Review Letters, 86:5188-5191, 2001), a universal quantum computation
scheme with promising physical implementations, can be efficiently simulated by a randomized algorithm
if its quantum resource is derived from a small-treewidth graph.

-ph/0511069v7 12 Jul 2009

Markov, Shi arXiv:quant-ph/0511069
Treat tensor networks as graphical models



TN and graphical model

Simulation of low-depth quantum circuits as complex undirected graphical models

Sergio Boixo,! Sergei V. Isakov,! Vadim N. Smelyanskiy,! and Hartmut Neven!

L Google Inc., Venice, CA 90291, USA
(Dated: January 23, 2018)

Near term quantum computers with a high quantity (around 50) and quality (around 0.995 fi-
delity for two-qubit gates) of qubits will approximately sample from certain probability distributions
beyond the capabilities of known classical algorithms on state-of-the-art computers, achieving the
first milestone of so-called quantum supremacy. This has stimulated recent progress in classical
algorithms to simulate quantum circuits. Classical simulations are also necessary to approximate
the fidelity of multiqubit quantum computers using cross entropy benchmarking. Here we present
numerical results of a novel classical simulation algorithm to calculate output probabilities of uni-
versal random circuits with more qubits and depth than previously reported. For example, circuits
with 5 X 9 qubits of depth 40, 7 x 8 qubits of depth 30, and 10 x (x > 10)) qubits of depth 19
are all easy to sample by calculating around one thousand measurements in a single workstation.
Cross entropy benchmarking with around one million measurements for these circuits is now also
possible in a computer cluster. The algorithm is related to the “Feynman path” method to simulate
quantum circuits. For low-depth circuits, the algorithm scales exponentially in the depth times the
smaller lateral dimension, or the treewidth, as explained in Boixo et. al. [1], and therefore confirms
the bounds in that paper. In particular, circuits with 7 X 7 qubits and depth 40 remain currently
out of reach. Follow up work on a supercomputer environment will tighten this bound.

* Treat tensor networks as graphical models

* Treat tensor network contraction as node elimination in graphical
models

 Use heuristics (e.g. QuickBB) for finding an elimination order
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Classical Simulation of Intermediate-Size Quantum Circuits

Jianxin Chen,' * Fang Zhang,>* ' Cupjin Huang,”> Michael Newman,** and Yaoyun Shi®

'Aliyun Quantum Laboratory, Alibaba Group, Hangzhou, Zhejiang 311121, China
2Aliyun Quantum Laboratory, Alibaba Group, Bellevue, WA 98004, USA
*Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109, USA
4Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
(Dated: May 8, 2018)

We introduce a distributed classical simulation algorithm for general quantum circuits, and present
numerical results for calculating the output probabilities of universal random circuits. We find that
we can simulate more qubits to greater depth than previously reported using the cluster supported
by the Data Infrastructure and Search Technology Division of the Alibaba Group. For example, com-
puting a single amplitude of an 8 x 8 qubit circuit with depth 40 was previously beyond the reach of
supercomputers. Our algorithm can compute this within 2 minutes using a small portion (=~ 14% of
the nodes) of the cluster.

Furthermore, by successfully simulating quantum supremacy circuits of size 9 x 9 x40, 10 x 10 x 35,
11 x 11 x 31, and 12 x 12 x 27, we give evidence that noisy random circuits with realistic physical
parameters may be simulated classically. This suggests that either harder circuits or error-correction
may be vital for achieving quantum supremacy from random circuit sampling.

PACS numbers: 03.65.Ud

* Treat tensor networks as graphical models
» Use slow-heuristics (e.g. QuickBB) for find a elimination order

* Dynamic slicing



Partitioning-based contraction order

SciPost Physics m

Fast counting with tensor networks

S. Kourtis'™, C. Chamon!, E. R. Mucciolo?, A. E. Ruckenstein!

1 Physics Department, Boston University, Boston, Massachusetts 02215, USA
2 Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
* kourtis@bu.edu

October 23, 2019

Hyper-optimized tensor network contraction

Johnnie Gray'? and Stefanos Kourtis!:3*

!Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
?Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
3Department of Physics, Boston University, Boston, MA, 02215, USA

*Institut quantique & Département de physique, Université de Sherbrooke, Québec J1K 2R1, Canada
March 12, 2021




Amplitudes to samples

Quantum Supremacy Is Both Closer and Farther
than It Appears

Igor L. Markov', Aneeqa Fatima', Sergei V. Isakov?, and Sergio Boixo®
1 University of Michigan, 2260 Hayward St, Ann Arbor, MI 48109
2 Google Inc., 8002 Ziirich, Switzerland
3 Google Inc., Venice, CA, 90291

September 28, 2018

« Small uncorrelated batch (about 10) for one
perfect sample

* Frugal sampling



Approximate simulation using MPSs

PHYSICAL REVIEW X 10, 041038 (2020)

Featured in Physics

What Limits the Simulation of Quantum Computers?

Yiqing Zhou ,'* E. Miles Stoudenmire®,” and Xavier Waintal®”

'Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
3Univ. Grenoble Alpes, CEA, IRIG-Pheligs, 38054 Grenoble, France

® (Received 19 February 2020; revised 22 September 2020; accepted 5 October 2020; published 23 November 2020)

An ultimate goal of quantum computing is to perform calculations beyond the reach of any classical
computer. It is therefore imperative that useful quantum computers be very difficult to simulate classically,
otherwise classical computers could be used for the applications envisioned for the quantum ones. Perfect
quantum computers are unarguably exponentially difficult to simulate: the classical resources required
grow exponentially with the number of qubits N or the depth D of the circuit. This difficulty has triggered




Amplitudes to samples

an ‘ Quaﬂtum |ch 88 atiOﬂ www.nature.com/npjqi

ARTICLE OPEN
A flexible high-performance simulator for verifying and
benchmarking quantum circuits implemented on real hardware

Benjamin Villalonga (%3, Sergio Boixo (&, Bron Nelson®?, Christopher Henze?, Eleanor Rieffel?, Rupak Biswas? and
Salvatore Mandra (%%

Here we present gFlex, a flexible tensor network-based quantum circuit simulator. gFlex can compute both the exact amplitudes,
essential for the verification of the quantum hardware, as well as low-fidelity amplitudes, to mimic sampling from Noisy
Intermediate-Scale Quantum (NISQ) devices. In this work, we focus on random quantum circuits (RQCs) in the range of sizes
expected for supremacy experiments. Fidelity f simulations are performed at a cost that is 1/f lower than perfect fidelity ones. We
also present a technique to eliminate the overhead introduced by rejection sampling in most tensor network approaches. We
benchmark the simulation of square lattices and Google’s Bristlecone QPU. Our analysis is supported by extensive simulations on
NASA HPC clusters Pleiades and Electra. For our most computationally demanding simulation, the two clusters combined reached a
peak of 20 Peta Floating Point Operations per Second (PFLOPS) (single precision), i.e.,, 64% of their maximum achievable
performance, which represents the largest numerical computation in terms of sustained FLOPs and the number of nodes utilized
ever run on NASA HPC clusters. Finally, we introduce a novel multithreaded, cache-efficient tensor index permutation algorithm of
general application.

npj Quantum Information (2019)5:86 ; https://doi.org/10.1038/541534-019-0196-1

« Small correlated batch (about 10) for one
perfect sample

* Frugal sampling



Combining partition-order and Frugal sampling

Classical Simulation of Quantum Supremacy Circuits

Cupjin Huang,! Fang Zhang,?> Michael Newman,? Junjie Cai,*
Xun Gao,! Zhengxiong Tian,’ Junyin Wu,* Haihong Xu,” Huanjun Yu,’
Bo Yuan,® Mario Szegedy,! Yaoyun Shi', Jianxin Chen'

! Alibaba Quantum Laboratory,

Alibaba Group USA, Bellevue, WA 98004, USA
?Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109, USA
3Departments of Physics and Electrical and Computer Engineering,
Duke University, Durham, NC 27708, USA
“Alibaba Cloud Intelligence,

Alibaba Group USA, Bellevue, WA 98004, USA
®Alibaba Cloud Intelligence,

Alibaba Group, Hangzhou, Zhejiang 310000, China
6 Alibaba Infrastructure Service,

Alibaba Group, Hangzhou, Zhejiang 310000, China

» Small batch (64) for one perfect sample
* Frugal sampling

» Single tensor-network contraction for each batch



Simulated annealing for order/slicing finding

Recursive Multi-Tensor Contraction for XEB Verification of Quantum Circuits

Gleb Kalachev,'?>* Pavel Panteleev,’>? T and Man-Hong Yung! 3 *

! Huawei 2012 Lab
2 Lomonosov Moscow State University.
3 Institute for Quantum Science and Engineering, and Department of Physics,
Southern University of Science and Technology, Shenzhen, 518055, China
(Dated: August 13, 2021)

The computational advantage of noisy quantum computers have been demonstrated by sampling
the bitstrings of quantum random circuits. An important issue is how the performance of quan-
tum devices could be quantified in the so-called “supremacy regime”. The standard approach is
through the linear cross entropy (XEB), where the theoretical value of the probability is required
for each bitstring. However, the computational cost of XEB grows exponentially. So far, random
circuits of the 53-qubit Sycamore chip was verified up to 10 cycles of gates only; the XEB fidelities
of deeper circuits were approximated with simplified circuits instead. Here we present a multi-
tensor contraction algorithm for speeding up the calculations of XEB of quantum circuits, where
the computational cost can be significantly reduced through a recursive manner with some form of
memoization. As a demonstration, we analyzed the experimental data of the 53-qubit Sycamore
chip and obtained the exact values of the corresponding XEB fidelities up to 16 cycles using only
moderate computing resources (few GPUs). If the algorithm was implemented on the Summit su-
percomputer, we estimate that for the 20-cycles supremacy circuits, it would only cost 7.5 days,
which is several orders of magnitudes lower than previously estimated in the literature.

T(T") T(T") T(17) T(T*) m |k Contraction cost Efficiency | Time (days or years)
i : 1 amp (S) |k amps (M)| S M S M gain
| N\ L 12/0.5M| 1.8-10"% | 2.8-10'7 |61%|43%| 94d |4.3d| 22x
A /\ 14/0.5M| 1.0-10* | 1.9-10'® |60%|60%| 538 d |21d| 25x
R A L T E N S 16| 2M | 8.9-10%° | 1.4-10'2 |63% |48% 5000 y|0.5 y [ 10000x
Tt T, TiT, T:T., T!T, T!T3 Tf Ty

T =Tj....Ti =T = T(Tp...,T3) = T(T},...,Tj)

(b) Verification complexity

Local moves

Verifying the Sycamore circuits up to 16 cycles




The big-batch method

1 1 1
1 1 I
1 1 1
1 I 1
1 1 1 1

Left boundary condition: Right boundary condition:
Product state Single-amplitude Full-amplitude Big-batch
0 @ -0 —©
0 O~ -0 O
0y ©- -
0y O —Q
0y O —Q

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



4 kinds of boundary conditions

Full-amplitude Single-amplitude

o{——I

Batch-amplitude



Contraction order
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Time complexity: d° + d° + d° + d? Time complexity: d” + d*> + d* + d*



Contraction order and contraction tree

_— —
o 0 0 0 O o 0 0 O
1 2 3 4 5 2 3 4 5
= B o BN o = ® 0 @
= o 0 @ = o0
= o - - o-@
= o - e
Time complexity: d° + d° + d° + d? Time complexity: d” + d*> + d* + d*
12345
1234
123
12




Complexity of the contraction tree

12345

1 2

Space complexity:
e size of the largest tensor in the contraction tree
e Optimal space complexity: exp(W), W is the tree width of the graph
Time complexity:
e Time complexity of each node is the product of dimensions associated with edges

e Time complexity of the contraction tree is the time complexity of each node (usually dominated
by the largest one)



Find a contraction tree to minimize the complexity

12345

1 2 3

Greedy algorithms
Partitioning based algorithms [Gray/Kourtis 2021]

Simulated-annealing-based algorithm [Kalachev et al 2021]



Slicing
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Slicing

The index k is sliced and the contraction of the original tensor network
becomes summation of d,, sub-tasks



big-batch of amplitudes using the big-head algorithm

20 cycles

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



Correlated bitstrings

bitstring amplitude probability

000000000000000000000001000001 10100000010000100000000| —2.97 x 107® + 2.06 x 1078 {1.31 x 107"
00000000000000000000000000000000000000000100001000000| 1.50 x 1078 +3.85 x 10~ [2.39 x 1071°
00000000000111000001111100001111100001111100110000000| =3.17 x 10™° —5.45 x 107 {3.97 x 107"
00000000000111000001111100001111100001111000101000000|-1.89 x 1071 +3.13 x 107°i|9.86 x 10~'8
0000000000000000000000000000010000000001 1100010000000 | 8.07 X 1071% + 4.35 x 10719 |8.41 x 1071

20 cycles




A big batch of amplitudes

A sub-space, containing 2°! amplitudes

The whole space, containing 23 amplitudes



Big-batch — full amplitude simulation

nature

Explore content v  About the journal v  Publish with us v

nature > articles > article

Article | Published: 23 October 2019

Quantum supremacy using a programmable
superconducting processor

Frank Arute, Kunal Arya, ... John M. Martinis®& 4+ Show authors

43-qubit Sycamore circuit

Google’s Julich Supercomputer
paper: 100,000 cores 250T meomory

Big-batch
1 GPU
algorithm

F.

# qubits to simulate

Taihu light
Full 49 qubits supercomputer
- u u
amplitudes [Li et al. IEEE PDS 2019]
Big-batch
50 qubits 100 GPUs
algorithm

Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



Spoofing the Linear Cross Entropy Benchmark (XEB)

For supremacy circuits with
53 qubits and 20 cycles

109

107t

Np

22! exact probabilities Py(s)
verifying the Porter-Thomas distribution

Fxgp = 2" Z q(s)py(s) — 1
s€{1,0}"

=2"(py(s)), — 1

zZanU(s)—l

s~q
q\
2.01
\
1.51 &\
F \
XEB .\
1.0 1
\.\
0.5 '\.
0.0 ~e

20% 40% 60% 80% 100%
Percentage of bitstrings

Post-sampling
Selecting 1 million bitstrings, XEB=0.739

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



Computational cost

Correlated sampling

Computational Computation .
. Time
complexity hardward
Google [Arute et. al., 2019] Summit Super
(Estiamted) ' Computer 10,000 Years
IBM [Pednault et. al., 2019] 1 Summit Super
(Estimated) 1.15 X 10 Computer (all disks) 2.5 days
A“baba [H-uang et. al., 2020] 1 33 X 1022 Summlt Super 20 days
(Estimated) Computer
Ours [arXiv:2103.03074] 3
(Computed) 451 %10 60 NVIDIA GPUs 5 days

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)




Parallel Computation with GPUs

GPU

* Intel CPUs: 3 GFlops / core, 32 Cores * NVIDIA Tesla V100 FP32 performance:
14.13 TFLOPS

* NVIDIA Tesla A100 FP32 performance:

19.5 TFLOPs




Implementing the big-batch approach on a super computer
reduces the computation time from 5 days to 314 seconds

Specific Types of Contributions

ACM Gordon Bell Prize

Innovations in applying high-performance computing to science, engineering, and large-scale data analytics

Award Winners Nominations Committee Members

Closing the “Quantum Supremacy” Gap: Achieving Real-Time
Simulation of a Random Quantum Circuit Using a New Sunway
Supercomputer

Yong (Alexander) Liu'”, Xin (Lucy) Liu'”, Fang (Nancy) Li!*, Haohuan Fu??, Yuling Yang!-?
Jiawei Song!®, Pengpeng Zhao'?, Zhen Wang!?®, Dajia Peng??, Huarong Chen!”
Chu Guo*, Heliang Huang?*, Wenzhao Wu?, Dexun Chen??

1. Zhejiang Lab, Hangzhou, China
2. Tsinghua University, Beijing, China
3. National Supercomputing Center in Wuxi, Wuxi, China
4. Shanghai Research Center for Quantum Sciences, Shanghai China




Differences

Big-batch simulation + sampling Sycamore hardware sampling

Correlated samples Uncorrelated samples

Exact sub-space simulation Noisy full-space simulation
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Left boundary condition: Right boundary condition:
Product state Single-amplitude Full-amplitude Big-batch Sparse state
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0 @ @ @ b
0 @ @ .-
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0) ©- @ ey

Feng Pan, Keyang Chen, PZ ,arXiv:2111.03011



4 kinds of boundary conditions

Full-amplitude Single-amplitude
() (b)
o1—11 ——_1 o1+—1 e —11-@
o—11—=0 ——_F o—1—1 ~—0—-0

© C)

o—=o -——O—0e o—0O
oO——0 - —E—- o——0

Batch-amplitude Sparse-state




Contractions with the sparse state

111 010 000

— 111 010 000

1

' 1110 00 123 [ B
B | —

U

|

(b) (c)

* We want only amplitudes for bitstrings {111, 010, 000}

 Contracting the red part in (a) merges qubits 2 and 3,
resulting to (b), where only {11,10,00} sub-bitstrings are
necessary.

 Contracting the red part in (b) gives the final results
containing only the required bitstrings.



Solving the uncorrelated sampling problem

() .° .‘ .° .° .' .’ Q’ .‘ .° Q° .° .‘ .' .° Q’ ’° C° Q‘ ” ’°/°

o2y
SESEEERRN NNt

S

~ Single TN contraction

< <
Importance sampling
tat
220 uncorrelated samples j, oparse state
] ] ] 2" uncorrelated groups
with fidelity = 1 each group contains 64 samples

Feng Pan, Keyang Chen, PZ ,arXiv:2111.03011



From group to a representative bitstring

<

Importance sampling

* Each group contains 64 bitstrings {S;|i = 1,...,64}, with
probability {P, = |y;|*} associated with the sparse state .

* Loop over 64 bitstrings from the s,. At the i-th bitstring,
replace the current bitstring by s, with probability
min(1, P;/P,

urrent) ‘

* [t's nothing but Metropolis-Hasting
» Satisfies Detailed Balance
* 64 is large enough for the PT distribution



Trading off fidelity for computational complexity

1. Using approximate state, e.g. MPS

2. Sampling from a mixed distribution ( a small portion
from true distribution + a large part from pure noise)

. |
o Noisystate: p = fly){wl+ 1 -f)—

e 2000 bit strings with from |y){yw| and 998000 from
uniform distribution

3. Summing over a fraction of paths in the path-integral
representation.



Trading off fidelity for computational complexity

Drilling a hole — breaks 2 qubit lines — inserting 2 error gates
= (Ve ()=(! 0\t 1L,
0 0 0 O 2 2

Drilling 4 holes —> F ~ 278 = 0.00390625



Head-tail point of view to the hole-drilling




Exploring low-rank structures in the fSim gates

) () 9 9 9 9 9 9 9 0010 "

L/
il
st

| 1 ' I 1 ' I 1 1 ! 1 1 !

| 1 1 | 1 1 | 1 1 I 1 1 !
) 'a" ) " 'a" ) ) 'a" ‘" ) Y} .

1 I I 1 I I 1 1 ! 1 1 I

N~ NS NS A S N S
IIIIIII

R A L L N L

N A

— O Keep fidelity
C
1 0 0 0 |
£Sim(@0, ) = |° 08¢  —isin® 0 Y Decrease fidelity
’ 0 —isinfd cosd 0 — —
0 0 0 e ﬂ — A — / by a factor of
5w Eow F N (sin2(6’) +1)/2

[ 1Gin*©@) + 13121 ~ 0.9565
i=1

=278%0.9565 =~ 0.0037

estimate

F. Pan, PZ, arXiv:2103.03074 (2021) , Phys. Rev. Lett. 129, 090502
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Parallel Computation with GPU




GPU efficiency

NVIDIA-SMI 470.82.01 Driver Version: 470.82.01 CUDA Version: 11.4
GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap Memory-Usage | GPU-Util Compute M.
MIG M.

+ +

@ Tesla V100S-PCI... Off 00000000:1A:00.0 Off 0
N/A  32C PO 37W / 250w 26024M1B / 32510MiB 0% Default
N/A
1 Tesla V100S-PCI... Off 00000000:3D:00.0 Off 0
N/A  30C PO 25W / 250W 13MiB / 32510MiB 0% Default
N/A
2 NVIDIA A100-PCI... Off 00000000:88:00.0 Off 0
N/A  34C PO 64w / 300w 31607MiB / 81251MiB 18% Default
Disabled
3 NVIDIA A100-PCI... Off 00000000:89:00.0 Off 0
N/A  56C PO 199w / 300w 4684MiB / 81251MiB 100% Default
Disabled
4 NVIDIA A100-PCI... Off 00000000:B1:00.0 Off 0
N/A  30C PO 61w / 300w 1921MiB / 81251MiB 18% Default
Disabled
5 NVIDIA A100-PCI... Off 00000000:B2:00.0 Off 0
N/A  32C PO 63W / 300W 20670M1B / 81251MiB 15% Default
Disabled




GPU efficiency

* NVIDIA Tesla V100 FP32 performance: 14.13 TFLOPS
* NVIDIA Tesla A100 FP32 performance: 19.5 TFLOPs

« But with limited Bandwidth: 900GB/s and 1.6TB/s

6 for multiplication + 2 for addition, with Complex64 (FP32 + FP32)

\

- 8 X time complexity
~ GPU FLOPS capacity X running time




Trade GPU efficiency with FLOPs: Branch Merge

Low time complexity Low time complexity
Low efficiency Low efficiency

>

3.87 x Time Complexity
4.4% —>38.4%



Data Original |Branch merge
T. head one sub-task 2.3816 x 10'3| 6.967 x 10"3
T. tail one sub-task 2.9425 x 103 | 8.796 x 10%°
Overall 7. (2! sub-tasks) 3.489 x 10'® | 1.033 x 10"
Space complexity 230
# of slicing edges in @,ead 6
# of slicing edges in g?mi, 7
# of slicing edges 1n the interface 16
# of companion edges in éhead 0
# of companion edges in :G\taﬂ 5
# of companion edges in the interface 16
Fidelity of rank one approximation 0.9564714760983217
GPU efficiency head - 31.76%
GPU efficiency tail - 14.27%
Overall efficiency - 18.85%




Histogram of probabilities

100 28
1071

=
21072 £

2 g 2
a S
10 >

n 2—10-

10~ >-11

10 e 2-11>-10 2-9 2—8
Np Estimated fidelity
Histogram of approximate Fidelity vs. norm
bitstring probabilities in the path integral interpretation

p(s) = | w(s)|*/H,



Validation of the approach using smaller Sycamore circuits

0.5 ® fidelity 0.016 1 e fidelity
=o== estimated fidelity 0.014 - ' * estimated fidelity
0.4- —}— logXEB ' { logXEB
' —— XEB 0.012 - I XEB
.4?0-3 .4?0.010
9 % 0.008
o 008 -
i 0.2 ir I
0.006 A
0.1 0.004 - '
0.0 - 0.002 A
1 2 3 4 5 6 7 8 §) 7 8
K K

Sycamore EFGH circuits with 30 qubits, 14 cycles

We obtain 2%° bitstring probabilities and 229 uncorrelated samples, averaged
over 15 sets of samples.



Verifications with different sizes

0.010

# estimated fidelity
0.008 - fildeity

¥ XEB fidelity
0.006-
0.0041 $ I i
0.002 1
0.000

30 38 45
number of qubits

Sycamore EFGH circuits with 14 cycles, and a different number of qubits.

We obtain 2%° bitstring probabilities and 229 uncorrelated samples, averaged
over 15 sets of samples.



Dependence on the group size

<

Importance

0-003__"}';'{"{"*"{"'i"“f'

oa)
) i
0.001 -
0.000 - } - = fidelity
0 10 20 30 40 50 60

XEB as a function of group size | for Sycamore EFGH circuits with 30 qubits, 14 cycles

We obtain 2%° bitstring probabilities and 229 uncorrelated samples, averaged
over 15 sets of samples.



Verification of the entropy

20.373 -
20.372 -
o ! !
20372{F ¥ ¥ ¥
X
*
203714 [ 3%
20.370 - % exact entropy
® estimated entropy
1 2 3 4 5 6 7 8

K

The exact entropy of the approximate state distribution of | y(s) |zcompared with the
entropy estimated using 2*%uncorrelated samples generated using the sampling methodt,
for K cuts in the Sycamore circuits with n = 30 qubits, m = 14 cycles, and EFGH
sequence. Each data point is averaged over 15 independent sets of samples of size 2.



Computational cost

Computational Computation Ti
. ime
complexity hardward
Google [Arute et. al., 2019] Summit Super
(Estiamted) Computer 10,000 Years
IBM [Pednault et. al., 2019] 71 Summit Super
(Estimated) 1.18 x 10 Computer (all disks) 2.5 days
Alibaba [Huang et. al., 2020] : 2 Summit Super
(Estimated) ' 1.33x10 Computer 20 days
Ours [arXiv:2103.03074]
(Computed) 4.51 x 10!8 60 NVIDIA GPUs 5 days
Correlated sampling :
Ours [arXiv: 2111.03011] 512 NVIDIA GPUs 15 hours
18
U (C?Tdeted) I 4D Exa-Supercomputer Dozens of seconds
ncorrelated sampling | (Estimate)
References:

F. Pan, K.Chen, PZ, arXiv:2111.03011 (2021), Phys. Rev. Lett. 128, 030501
F. Pan, PZ, arXiv:2103.03074 (2021) , Phys. Rev. Lett. 129, 090502




