
quantum circuit simulations with
Tensor Networks

Pan Zhang
ITP,CAS

华南师⼤讲习班
2022.11.21 
2022.11.23

Outlines

Simulation methods of general quantum circuits

• Full amplitude

• Single amplitude

• Approximate simulations: MPS, neural networks, path
integrals

• Simulation of stabilizer circuits

Simulation of Google’s Sycamore quantum circuits

• The big-batch method

• The sparse-state method

Simulation of quantum circuits

Computing amplitudes

• Full amplitudes

• Single amplitude

Computing expectations

• Energy expectations
(VQE, QAOA)

Sampling problem

• Sycamore problem

Quantum circuits

•Start from the initial state

•Applying unitary operators

Full-amplitude simulation: store and update the state vector

States and Gates are tensors

|ψinit⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ Rank one

1

2 [1 1
1 −1]=

= (1
0)

Each dimension of the state vector is independently operated

1

2 [1 1
1 −1] × (1

0) =
1

2 (1
1)

=

https://ai.googleblog.com/2018/05/the-question-of-quantum-supremacy.html

States and Gates are tensors

Diagram notation of tensor networks

Only Linear operations !!!

Tensor networks in physics:
imposing prior of physical wave functions

In Physics Out of Physics Diagram

grouping of indices unfolding, matricization

splitting of indices tensorizing

matrix product states tensor train
decomposition

periodic boundary
MPS

tensor chain
decomposition

tree tensor networks hierarchical Tucker
decompostion

single-site DMRG alternating least square

two-site DMRG modified alternating least
square

Einsum notations of tensor network contractions

Space complexity: the dimension of the largest tensor

Time complexity: product of dimensions of all unique indices

c = einsum(A,B,”j,j”)

C = einsum(A,B,”ij,jk->ik”)

D = einsum(A,B,C,”ij,jk,kl”)

c = A ⋅ B

C = AB

D = ABC

A B

j j

c

A B

kj j k

C

i l i l

D

A B

i k

j j
i k

C

Computational complexity

Space complexity: the dimension of the largest tensor

Time complexity: product of dimensions of all unique indices

c = A ⋅ B

C = AB

D = ABC

A B

j j

c

A B

kj j k

C

i l i l

D

A B

i k

j j
i k

C

Time complexity

dj

di

dj
dl

di dk

di
di

dj
dk

dk
dl

Dil =
dj

∑
j=1

dk

∑
k=1

AijBjkCkl

c =
dj

∑
j=1

AjBj

Cik =
dj

∑
j=1

AijBjk

dj

didjdkdl

didjdk

Automatically detecting structures in the data

106 data points in a vector

0.000, 0.100, 0.199, 0.296, 0.389, 0.479, 0.565, 0.644, 0.717, 0.783,
0.841, 0.891, 0.932, 0.964, 0.985, 0.997, 1.000, 0.992, 0.974, 0.946,
0.909, 0.863, 0.808, 0.746, 0.675, 0.598, 0.516, 0.427, 0.335, 0.239,
0.141, 0.042, -0.058, -0.158, -0.256, -0.351, -0.443, -0.530, -0.612,
……
……
-0.688, -0.757, -0.818, -0.872, -0.916, -0.952, -0.978, -0.994, -1.000,
-0.996, -0.982, -0.959, -0.926, -0.883, -0.832, -0.773, -0.706, -0.631,
-0.551, -0.465, -0.374, -0.279, -0.182, -0.083, 0.017, 0.117, 0.215,
0.312, 0.405, 0.494, 0.578, 0.657, 0.729, 0.794, 0.850, 0.899, 0.938

[

]

Automatically detecting structures in the data

106 data points in a vector

0.000, 0.100, 0.199, 0.296, 0.389, 0.479, 0.565, 0.644, 0.717, 0.783,
0.841, 0.891, 0.932, 0.964, 0.985, 0.997, 1.000, 0.992, 0.974, 0.946,
0.909, 0.863, 0.808, 0.746, 0.675, 0.598, 0.516, 0.427, 0.335, 0.239,
0.141, 0.042, -0.058, -0.158, -0.256, -0.351, -0.443, -0.530, -0.612,
……
……
-0.688, -0.757, -0.818, -0.872, -0.916, -0.952, -0.978, -0.994, -1.000,
-0.996, -0.982, -0.959, -0.926, -0.883, -0.832, -0.773, -0.706, -0.631,
-0.551, -0.465, -0.374, -0.279, -0.182, -0.083, 0.017, 0.117, 0.215,
0.312, 0.405, 0.494, 0.578, 0.657, 0.729, 0.794, 0.850, 0.899, 0.938

[

]

=

102

= =

106 103

103

102 102

Automatically detecting structures in the data

106 data points in a vector

⇡

2⇥ 104 scalars

103

=

106

=

0.000, 0.100, 0.199, 0.296, 0.389, 0.479, 0.565, 0.644, 0.717, 0.783,
0.841, 0.891, 0.932, 0.964, 0.985, 0.997, 1.000, 0.992, 0.974, 0.946,
0.909, 0.863, 0.808, 0.746, 0.675, 0.598, 0.516, 0.427, 0.335, 0.239,
0.141, 0.042, -0.058, -0.158, -0.256, -0.351, -0.443, -0.530, -0.612,
……
……
-0.688, -0.757, -0.818, -0.872, -0.916, -0.952, -0.978, -0.994, -1.000,
-0.996, -0.982, -0.959, -0.926, -0.883, -0.832, -0.773, -0.706, -0.631,
-0.551, -0.465, -0.374, -0.279, -0.182, -0.083, 0.017, 0.117, 0.215,
0.312, 0.405, 0.494, 0.578, 0.657, 0.729, 0.794, 0.850, 0.899, 0.938

[

]

103
103

103

10

⇥

Automatically detecting structures in the data

106 data points in a vector

0.000, 0.100, 0.199, 0.296, 0.389, 0.479, 0.565, 0.644, 0.717, 0.783,
0.841, 0.891, 0.932, 0.964, 0.985, 0.997, 1.000, 0.992, 0.974, 0.946,
0.909, 0.863, 0.808, 0.746, 0.675, 0.598, 0.516, 0.427, 0.335, 0.239,
0.141, 0.042, -0.058, -0.158, -0.256, -0.351, -0.443, -0.530, -0.612,
……
……
-0.688, -0.757, -0.818, -0.872, -0.916, -0.952, -0.978, -0.994, -1.000,
-0.996, -0.982, -0.959, -0.926, -0.883, -0.832, -0.773, -0.706, -0.631,
-0.551, -0.465, -0.374, -0.279, -0.182, -0.083, 0.017, 0.117, 0.215,
0.312, 0.405, 0.494, 0.578, 0.657, 0.729, 0.794, 0.850, 0.899, 0.938

[

]

⇡= =

102

10

1.2⇥ 104 scalars

10

102102 102102102106

Two problems

Tensor decomposition (Design / Learn a circuit)

⇡

Tensor contraction (Simulate a circuit)

⇡

Gate composition

= =

=

Parallel operations

=

=

=

Full-amplitude simulation: the Schrödinger algorithm

HiQ

Cirq

Yao.jl

Qiskit

Qulacs

Azure Quantum

Quantum Paddle

|ψ⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ Rank one

1

2 [1 1
1 −1]=

= (1
0)

Each dimension of the state vector is independently operated

1

2 [1 1
1 −1] × (1

0) =
1

2 (1
1)

=

The Schrödinger algorithm

|ψ⟩ = | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ Rank one

The Schrödinger algorithm

• Permute+ reshape the tensor to a matrix; reshape the gate to a matrix;  
apply matrix multiplications 

• Use einsum, tensordor …

|ψ⟩ Rank > 1

The Schrödinger algorithm

Rank > 1|ψ⟩

The Schrödinger algorithm

Rank > 1|ψ⟩

The Schrödinger algorithm

Rank = 4 |ψ⟩

The Schrödinger algorithm

#qubits Space dimension Space complexity Storage Device

10 16 K bytes

20 16 M bytes

30 16 G bytes Laptop

40 16 T bytes Cluster

50 16 P bytes Supercomputer

53 128 P bytes All hard disks of
supercomputer

210 = 1024

220 = 60536

230 = 1073741824

240 = 1099511627776

250 = 1125899906842624

253 = 9007199254740992

The Schrödinger algorithm

The Schrödinger-Feynmann algorithm

The Schrödinger-Feynmann algorithm

The Schrödinger-Feynmann algorithm

The Schrödinger-Feynmann algorithm

+

The Schrödinger-Feynmann algorithm

+

The Schrödinger-Feynmann algorithm

+

++

The Schrödinger-Feynmann algorithm

+

++

The Schrödinger-Feynmann algorithm

Problem of the Schrödinger-Feynmann algorithm:
Complexity grows exponential with number of cuts

MPS algorithm

|ψ⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ Rank one

MPS algorithm

|ψ⟩ = | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ Rank one

|ψ⟩ Rank > 1

MPS algorithm

Rank > 1|ψ⟩

MPS algorithm

Rank > 1|ψ⟩

MPS algorithm

Rank = 4 |ψ⟩

MPS algorithm

Canonical forms of MPS
Analogous to the Tucker decomposition and HOSVDs, MPS has the
benefits of orthogonality.

=Benefits

• Fixed gauge, no ambiguity

• Easy norm computation

• Easy expectation/
correlation computation

• Always good conditioned

= =

=

=

Problem of MPS simulation

SWAP

Non-local operators

2D Layout

Results of MPS simulations of 2D circuits with CZ gates

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Results of MPS simulations of 2D circuits with CZ gates

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

(1 0
0 0) (0 1

0 0)
(0 0

1 0) (1 0
0 −1)

(1 0
0 1) (0 0

0 0)
(0 0

0 0) (1 0
0 −1)

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1

Singular values:  
[2, 2,0,0]

χ = 2

Results of MPS simulations of 2D circuits with fSim gates

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

1 0 0 cos θ
0 0 −i sin θ 0
0 −i sin θ 0 0

cos θ 0 0 e−iϕ

Singular values  | |2

[1,1, sin2(θ), sin2(θ)]

fSim gate has a flat prior fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

χ = 4

Results of MPS simulations of Sycamore circuits

Our results

Results of Group MPS simulations of Sycamore circuits

Our results

Neural network simulation of quantum circuits

M. Medvidovic and G. Carleo, npc Quantum information 7, 1 (2021)

B. Jonsson, B. Bauer, G. Carleo, arXiv:1808.05232 (2018)

Tensor network (e.g. MPS) states:
 low-rank, weak entanglements
 efficient and accurate to compute inner product

Neural network states
 high-rank
 difficult to compute inner products, need sampling
 variational optimization with a loss function D(|ψ⟩, A |ψ⟩)

S. Li, F. Pan, P. Zhou, PZ, PRB 104, 075154 (2021)

Neural network simulation of quantum circuits

Deep Boltzmann Machines

2D Tensor Network

S. Li, P. Zhou, F. Pan, PZ, Phys. Rev. B 104, 075154 (2021)

Neural network simulation of quantum circuits

M. Medvidovic and G. Carleo, npc Quantum information 7, 1 (2021)

B. Jonsson, B. Bauer, G. Carleo, arXiv:1808.05232 (2018)

Tensor network (e.g. MPS) states:
 low-rank, weak entanglements
 efficient and accurate to compute inner product

Neural network states
 high-rank
 difficult to compute inner products, need sampling
 variational optimization with a loss function D(|ψ⟩, A |ψ⟩)

Tensor network contraction and Path Integral

⟨ψ |sm⟩ = ∑
s1

∑
s2

⋯∑
sm−1

m

∏
t=1

⟨st−1 |Ut |st⟩

s0 s2 s3 sms1

U2 U3 UmU1 U2

st =
n

∏
i=1

st
i

Totally paths2n(m−2)

Tensor network contraction and complex Ising model

U2 U3 UmU1 U2

Final state = Marginals of complex Ising model

Single amplitude = Partition function of complex Ising model ⟨ψ |sm⟩

Final state and statistical mechanics model

U2 U3 UmU1 U2

sm
4

sm
3

sm
2

sm
1

s0
3

s0
4

s0
2

s0
1

s1
3

s1
4

s1
2

s1
1

s2
3

s2
4

s2
2

s2
1

s2
3

s2
4

s2
2

s2
1

P(sm
1 , sm

2 , sm
3 , ⋯, sm

n) =
1
Z ∑

s1

∑
s2

⋯∑
sm−1

m

∏
t=1

⟨st−1 |Ut |st⟩

2

=
1
Z ∑

s1
1

∑
s1
2

⋯∑
sm−1
n

e−E(s1
1,s2

2,⋯,sn
m)

2

Single amplitude = Energy of complex Stat. Mech.⟨ψ |sm⟩

Classical variational / sampling methods ?

Energy functions are difficult to compute.

Sign problem for sampling hidden variables.

No variational principles for joint amplitude of all variables.

U2 U3 UmU1 U2

sm
4

sm
3

sm
2

sm
1

s0
3

s0
4

s0
2

s0
1

s1
3

s1
4

s1
2

s1
1

s2
3

s2
4

s2
2

s2
1

s2
3

s2
4

s2
2

s2
1

Trading fidelity with complexity

Using approximate state, e.g. MPS

Sampling from a mixed distribution (a small portion from
true distribution + a large part from pure noise)

• Noisy state:

• 2000 bit strings with from and 998000 from
uniform distribution

Summing over a fraction of paths in the path-integral
representation.

ρ = f |ψ⟩⟨ψ | + (1 − f)
1
2n

|ψ⟩⟨ψ |

Simulation of stabilizer circuits
Stabilizer circuits:

• Gates are

CNOT : create entanglements

Hadamard : create superpositions

Cphase : add complex phases

• Stabilizer states from

Creates complex entanglements, but not universal

Gottesman-Knill Theorem: Stabilizer circuits can be simulated in polynomial time:
storing stabilizers (generators of the stabilizer sub-group) rather than the
state

Cx =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

H =
1

2 (1 1
1 −1)

S = (1 0
0 i)

|000⋯0⟩

Stabilizers: single qubit

: Z stabilizes , : X stabilizes

Stabilizer group for is =
Stabilizer group for is =

I = (1 0
0 1) X = (0 1

1 0) Y = (0 −i
i 0) Z = (1 0

0 −1)
X2 = Y2 = Z2 = I2 = I

XY = iZ, YX = − iZ, YZ = iX, ZY = − iX, ZX = iY, XZ = − iY

|0⟩ = (1
0) |1⟩ = (0

1) | + ⟩ =
1

2 (1
1) | − ⟩ =

1

2 (1
−1)

Z |0⟩ = |0⟩ |0⟩ X | + ⟩ = | + ⟩ | + ⟩

|0⟩ {I, Z} ⟨Z⟩
| + ⟩ {I, X} ⟨X⟩

Stabilizers: two and more qubits

GHZ state:

 , , ,

Stabilizer group for is

Stabilizer group for is

The n-qubit stabilizer states can be determined by a stabilizer
group of size , which has generators.

Rather than storing the state vector with parameters,
storing the stabilizers.

|ϕ+⟩ =
1

2
(|00⟩ + |11⟩)

Z1Z2 |ϕ+⟩ = |ϕ+⟩ X1X2 |ϕ+⟩ = |ϕ+⟩ −Y1Y2 |ϕ+⟩ = |ϕ+⟩ I1I2 |ϕ+⟩ = |ϕ+⟩

|ϕ+⟩ {II, XX, ZZ, − YY} = ⟨XX, ZZ⟩

|ϕ−⟩ =
1

2
(|00⟩ − |11⟩)

{II, − XX, ZZ, YY} = ⟨−XX, ZZ⟩

2n n

|ϕ⟩ 2n

n

Stabilizers: check matrix representation

 rows, each row indicate a stabilizer

 columns, corresponding to qubits

There is also a overall phase (not shown here)

l

n n

Stabilizers X checks Z checks

XIIIII 10000 00000

ZIIIII 00000 10000

IYIIII 01000 01000

IIXZI 00100 00010

P1 ≅ V4 ≅ C2 × C2 I ↦ 00 X ↦ 10 Z ↦ 01 Y ↦ 11

Stabilizer circuits

Now consider the state after a unitary operator applied
on an initial state which is stabilized by group with

.

• stabilizes .

• If is also a Pauli operator, is determined
by stabilizers specified by .

• No need to store , just trace the change of

U
|ψ⟩ S

g ∈ S, g |ψ⟩ = |ψ⟩

U |ψ⟩ = Ug |ψ⟩ = UgU†Ug |ψ⟩ = (UgU†)(U |ψ⟩)

UgU† U |ψ⟩

UgU† U |ψ⟩
UgU†

U |ψ⟩ S

Stabilizer circuits

For example:

Hadamard gate :

Controlled-Not gate :

Phase gate S:

Actually, generates , the normalizer of , Pauli group
on quits
i.e. for ,

 is also known as Clifford group

H
HXH† = Z; HYH† = − Y; HZH† = X

U
CxX1C†

x = X1X2; CxX1C†
x = X1; CxZ1C†

x = Z1; CxZ2C†
x = Z1Z2

SXS† = Y; SZS† = Z .

{H, Cx, S} N(Gn) Gn
n

U ∈ ⟨H, Cx, S⟩ UGnU† = Gn
N(Gn)

Simulation of stabilizer circuits

To apply to the qubit:

• Swap the row of the X check to the Z check

To apply to the qubit:

• Bitwise XOR the row of the X check into the row of the Z check

To apply from the qubit to the qubit:

• Bitwise XOR the row of the X check into the row of the X check

• Bitwise XOR the row of the Z check into the row of the Z check

Measurements can also be conveniently (commute or anti-commute with stabilizers).

H ith

ith

S ith

ith ith

Cx ith jth

ith jth

jth ith

Stabilizers X checks Z checks

XIIIII 10000 00000

ZIIIII 00000 10000

IYIIII 01000 01000

IIXZI 00100 00010

Google’s Sycamore circuits

53 qubits, 20 cycles

fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

Single qubit gates of Sycamore

Each one is a -rotation around an axis lying on the equator of the Bloch sphere.  
Up to a global phase, the gates are

π/2

single-qubit Clifford gates }
non-Cliford gate.

Quantum supremacy

A specific computational task

• No matter whether it is “useful”

Beyond the capabilities of classical super-computers

In the NISQ era:

• Noisy (no error correction)

• Circuits are not so deep

• Fidelity of gates are high

Aaronson and Chen’s conjecture:

A random circuit with qubits
and depth , no classical
algorithm can guess if

With probability

U n
∼ n

⟨0n |U |0n⟩ > Median (⟨0n |U |0n⟩)
1
2

+ O(2−n)

Quantum supremacy

P

NP

P#P

PSPACE

Easy

Hard

PH

EXP

BQP

S Aaronson, L Chen, arXiv:1612.05903

https://scholar.google.com/citations?user=T_OhvOsAAAAJ&hl=zh-CN&oi=sra

Statistical Mechanics

S = {+1,�1}n

P (S) =
1

Z
e��E(S) Z =

X

s

e��E(S)

" " " # " # # # # # " "

• Estimating the free energy

• Computing observables /
order parameters

• Sampling

Statistical Mechanics

P

NP

P#P

PSPACE

Easy

Hard

PH

EXP

S = {+1,�1}n

P (S) =
1

Z
e��E(S) Z =

X

s

e��E(S)

" " " # " # # # # # " "

Any discrete probability distribution is a tensor,

Tensor network for Statistical Mechanics

S = {+1,�1}n " " " # " # # # # # " "

decomposed using tensor networks.

<latexit sha1_base64="kO6lxo6UBc25+CyaZGaTyfF2oDQ=">AAACS3icbVBNTxsxEPUGaCH9YAtHLhZRpfTQaLeqaC9USBVSj4sgJGo2jbze2WBhe1f2bFG02v/XSy+99U/00gMIccAbcggfI9l6eu/NePySQgqLQfDXa62srj17vr7RfvHy1etN/83Wqc1Lw6HPc5mbYcIsSKGhjwIlDAsDTCUSBsn510Yf/ARjRa5PcFbAWLGpFpngDB018RMaa7jguVJMp1V8gUXtbpECCpkCjep21I0Vw7Mko8fv6D6NM8N4FdbV9xp+VO/jBJDRwyVPvb9kaQZO/E7QC+ZFH4NwATpkUdHE/xOnOS8VaOSSWTsKgwLHFTMouIS6HZcWCsbP2RRGDmqmwI6reRY1feuYlGa5cUcjnbPLHRVT1s5U4pzNyvah1pBPaaMSs8/jSuiiRND87qGslBRz2gRLU2GAo5w5wLgRblfKz5hLAl38bRdC+PDLj8Hph1641wuPPnYOviziWCc7ZJd0SUg+kQPyjUSkTzj5Rf6RS3Ll/fb+e9fezZ215S16tsm9aq3dAiLjs28=</latexit>

P (S) =
1

Z
e��E(S) =

1

Z
eP

Computing normalization of a discrete probability distribution

Z =
��� eP

���
1
= eP · 1>

2n = eP ·
✓

1
1

◆
⌦

✓
1
1

◆
⌦ · · ·⌦

✓
1
1

◆

| {z }
n

,

<latexit sha1_base64="gR+7ygFOl9NWUGX3qdISe0P1HtQ=">AAAC83icdVLLbhMxFPUMj7bh0RSWbCwipCKhKFMV0U1RJViwDBJpK+J05PHcSaz6MbI9lMj1b7BhAUJs+Rl2/A3OJIu0hStZOnPO8fXcYxe14NYNBn+S9NbtO3c3Nrc69+4/eLjd3Xl0bHVjGIyYFtqcFtSC4ApGjjsBp7UBKgsBJ8X5m4V+8gmM5Vp9cPMaJpJOFa84oy5S+U6yRRRcMC0lVaUnWkHwmAio3C4pYMqVp8bQefAsZIRkBKJryRDDpzP3PHSuNCgl/Rz829wTSd3MSL/4DqHzER+2XcklueAlOC5KwMNlD3KZZxgf4nUFE1Zqh3Hbpqhwlvu9MxXOPHG6Dv8xY9KoEkxhKIM4RRyGaMcl2HXceu26EHKvAn6Rd3uD/qAtfBNkK9BDqxrm3d+k1KyRoBwT1NpxNqjdJMbjOBMQg2ks1JSd0ymMI1Q0Hjjx7Z0F/CwyJa60iUs53LLrOzyV1s5lEZ2LCOx1bUH+Sxs3rjqYeK7qxoFiy4OqRmCn8eIB4JIbYE7MI6DM8PivmM1ojMzFZ9KJIWTXR74Jjvf62X7/5fv93tHrVRyb6Al6inZRhl6hI/QODdEIsaROviTfku9pk35Nf6Q/l9Y0We15jK5U+usvE9rxjA==</latexit>

<latexit sha1_base64="7KHsstuDxX85LOgNw9D8W56pRQ0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIelEKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1nx6hfl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI2RjMM=</latexit>=

Tensor networks for the Ising spin glasses

2

FIG. 1. (a) The tensor network representation of a square lattice
Ising spin glass. (b) An equivalent circuit representation used for the
practical simulation. See texts for definition of the symbols.

Tropical Tensor Network– The tropical algebra is defined
by replacing the usual sum and product operators for ordi-
nary real numbers with the max and sum operations respec-
tively [29]

x � y = max(x, y), x � y = x + y. (2)

One sees that �1 acts as zero element for the tropical number
since �1 � x = x and �1 � x = �1. On the other hand, 0
acts as the multiplicative identity since 0� x = x. The � and �
operators still have the commutative, associative, and distribu-
tive properties. However, since there is no additive inverse, the
� and � and operations define a semiring over R[{�1}. The
semiring formulation unifies a large number of inference al-
gorithms in the graphical models based on dynamic program-
ming [30, 31]. Recently, there have been e↵orts in combing
the semiring algebra with modern deep learning frameworks
with optimized tensor operations and automatic di↵erentia-
tion [32, 33].

One can consider tensor networks whose elements are trop-
ical numbers with the algebra Eq. (2). Since the elementary
operations involved in contracting tensor networks are just
sum and product, contraction of tropical tensor networks is
well defined. One can use such contraction to solve the ground
state of the Ising spin glass. For example, consider the Ising
spin glasses Eq. (1) defined on two dimensional square lattice,
the tropical tensor network is shown in Fig. 1(a). The ten-
sor network representation corresponds to the factor graph of
the spin glass graphical model [30]. There are 2 ⇥ 2 tropical

tensors =

Ji j �Ji j
�Ji j Ji j

!
reside on the bond connect-

ing vertices i and j, with the tensor elements being the neg-
ative coupling energies. The dots are diagonal tensors with

= hi, = �hi, and �1 for all other ten-

sor elements. In cases where the local field vanishes, these
dots reduce to the copy tensor in terms of the tropical algebra
which demands that all the legs have the same indices. Con-
traction of the tensor network under the tropical algebra gives
the ground state energy of the Ising spin glass. In the contrac-
tion, the � operation selects the optimal spin configuration and
the � operation sums the energy contribution from subregions

of the graph. The intermediate tensors record the minimal en-
ergy given the external tensor indices, so they corresponds to
max-marginals in the graphical model [34].

From the physics perspective, the tropical tensor net-
work naturally arises from computing the zero temper-
ature limit of the partition function Z =

P
{�} e��E .

The ground state energy, E⇤ = � lim�!1 1
� ln Z =

� lim�!1 1
� ln

P
{�}

Q
i< j e�Ji j�i� j

Q
i e�hi�i , involves ordinary

sum and product operations for the Boltzmann weights. When
taking the zero temperature limit, it is more convenient to deal
with the the exponents directly

lim
�!1

1
�

ln(e�x + e�y) = x � y,
1
�

ln(e�x · e�y) = x � y, (3)

which leads to the tropical algebra Eq. (2). The tropical rep-
resentation also corresponds to the logarithmic number sys-
tem [LW: add a citation here] which avoids the numerical
issue in dealing with exponentially large numbers on comput-
ers with finite precision numerics [22].

Moreover, one can also employ the present approach to
count the number of ground states at the same computational
complexity of computing the ground state energy. To im-
plement this, we further generalize the tensor element to be
a tuple (x, n) composed by a tropical number x and an or-
dinary number n. The tropical number records the nega-
tive energy, while the ordinary number counts the number of
minimal energy configurations. For tensor network contrac-
tion, we need the product and sum arithmetics of the tuple
(x1, n1) � (x2, n2) = (x1 + x2, n1 · n2) and (x1, n1) � (x2, n2) =
(max(x1, x2), n1 � n2) where

n1 � n2 =

8>>>>><
>>>>>:

n1 + n2 if x1 = x2

n1 if x1 > x2

n2 if x1 < x2

. (4)

Essentially, these two numbers in the tuple correspond to
leading order and the O(1/�) contributions (energy and en-
tropy) in the low temperature expansion of the log-partition
function. After contracting the tensor network, one reads out
the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as contraction
of the tropical tensor network. On a tree graph, contraction of
the tropical tensor network is equivalent to the max-sum algo-
rithm [2], i.e. the maximum a posterior version of the sum-
product (belief propagation) algorithm on graphical models.
On a general graph, when the junction tree algorithm [37] ap-
plies it can be treated as a special case of the tropical tensor
network contraction algorithm using a specific contraction or-
der ultilizing a tree decomposition of the graph.

Contraction of general tensor network belongs to the class
of #P hard problems [38], so it is unlikely to find polynomial

2

FIG. 1. (a) The tensor network representation of a square lattice
Ising spin glass. (b) An equivalent circuit representation used for the
practical simulation. See texts for definition of the symbols.

Tropical Tensor Network– The tropical algebra is defined
by replacing the usual sum and product operators for ordi-
nary real numbers with the max and sum operations respec-
tively [29]

x � y = max(x, y), x � y = x + y. (2)

One sees that �1 acts as zero element for the tropical number
since �1 � x = x and �1 � x = �1. On the other hand, 0
acts as the multiplicative identity since 0� x = x. The � and �
operators still have the commutative, associative, and distribu-
tive properties. However, since there is no additive inverse, the
� and � and operations define a semiring over R[{�1}. The
semiring formulation unifies a large number of inference al-
gorithms in the graphical models based on dynamic program-
ming [30, 31]. Recently, there have been e↵orts in combing
the semiring algebra with modern deep learning frameworks
with optimized tensor operations and automatic di↵erentia-
tion [32, 33].

One can consider tensor networks whose elements are trop-
ical numbers with the algebra Eq. (2). Since the elementary
operations involved in contracting tensor networks are just
sum and product, contraction of tropical tensor networks is
well defined. One can use such contraction to solve the ground
state of the Ising spin glass. For example, consider the Ising
spin glasses Eq. (1) defined on two dimensional square lattice,
the tropical tensor network is shown in Fig. 1(a). The ten-
sor network representation corresponds to the factor graph of
the spin glass graphical model [30]. There are 2 ⇥ 2 tropical

tensors =

Ji j �Ji j
�Ji j Ji j

!
reside on the bond connect-

ing vertices i and j, with the tensor elements being the neg-
ative coupling energies. The dots are diagonal tensors with

1
1

1
1 = hi, = �hi, and �1 for all other ten-

sor elements. In cases where the local field vanishes, these
dots reduce to the copy tensor in terms of the tropical algebra
which demands that all the legs have the same indices. Con-
traction of the tensor network under the tropical algebra gives
the ground state energy of the Ising spin glass. In the contrac-
tion, the � operation selects the optimal spin configuration and
the � operation sums the energy contribution from subregions

of the graph. The intermediate tensors record the minimal en-
ergy given the external tensor indices, so they corresponds to
max-marginals in the graphical model [34].

From the physics perspective, the tropical tensor net-
work naturally arises from computing the zero temper-
ature limit of the partition function Z =

P
{�} e��E .

The ground state energy, E⇤ = � lim�!1 1
� ln Z =

� lim�!1 1
� ln

P
{�}

Q
i< j e�Ji j�i� j

Q
i e�hi�i , involves ordinary

sum and product operations for the Boltzmann weights. When
taking the zero temperature limit, it is more convenient to deal
with the the exponents directly

lim
�!1

1
�

ln(e�x + e�y) = x � y,
1
�

ln(e�x · e�y) = x � y, (3)

which leads to the tropical algebra Eq. (2). The tropical rep-
resentation also corresponds to the logarithmic number sys-
tem [LW: add a citation here] which avoids the numerical
issue in dealing with exponentially large numbers on comput-
ers with finite precision numerics [22].

Moreover, one can also employ the present approach to
count the number of ground states at the same computational
complexity of computing the ground state energy. To im-
plement this, we further generalize the tensor element to be
a tuple (x, n) composed by a tropical number x and an or-
dinary number n. The tropical number records the nega-
tive energy, while the ordinary number counts the number of
minimal energy configurations. For tensor network contrac-
tion, we need the product and sum arithmetics of the tuple
(x1, n1) � (x2, n2) = (x1 + x2, n1 · n2) and (x1, n1) � (x2, n2) =
(max(x1, x2), n1 � n2) where

n1 � n2 =

8>>>>><
>>>>>:

n1 + n2 if x1 = x2

n1 if x1 > x2

n2 if x1 < x2

. (4)

Essentially, these two numbers in the tuple correspond to
leading order and the O(1/�) contributions (energy and en-
tropy) in the low temperature expansion of the log-partition
function. After contracting the tensor network, one reads out
the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as contraction
of the tropical tensor network. On a tree graph, contraction of
the tropical tensor network is equivalent to the max-sum algo-
rithm [2], i.e. the maximum a posterior version of the sum-
product (belief propagation) algorithm on graphical models.
On a general graph, when the junction tree algorithm [37] ap-
plies it can be treated as a special case of the tropical tensor
network contraction algorithm using a specific contraction or-
der ultilizing a tree decomposition of the graph.

Contraction of general tensor network belongs to the class
of #P hard problems [38], so it is unlikely to find polynomial

2

FIG. 1. (a) The tensor network representation of a square lattice
Ising spin glass. (b) An equivalent circuit representation used for the
practical simulation. See texts for definition of the symbols.

Tropical Tensor Network– The tropical algebra is defined
by replacing the usual sum and product operators for ordi-
nary real numbers with the max and sum operations respec-
tively [29]

x � y = max(x, y), x � y = x + y. (2)

One sees that �1 acts as zero element for the tropical number
since �1 � x = x and �1 � x = �1. On the other hand, 0
acts as the multiplicative identity since 0� x = x. The � and �
operators still have the commutative, associative, and distribu-
tive properties. However, since there is no additive inverse, the
� and � and operations define a semiring over R[{�1}. The
semiring formulation unifies a large number of inference al-
gorithms in the graphical models based on dynamic program-
ming [30, 31]. Recently, there have been e↵orts in combing
the semiring algebra with modern deep learning frameworks
with optimized tensor operations and automatic di↵erentia-
tion [32, 33].

One can consider tensor networks whose elements are trop-
ical numbers with the algebra Eq. (2). Since the elementary
operations involved in contracting tensor networks are just
sum and product, contraction of tropical tensor networks is
well defined. One can use such contraction to solve the ground
state of the Ising spin glass. For example, consider the Ising
spin glasses Eq. (1) defined on two dimensional square lattice,
the tropical tensor network is shown in Fig. 1(a). The ten-
sor network representation corresponds to the factor graph of
the spin glass graphical model [30]. There are 2 ⇥ 2 tropical

tensors =

Ji j �Ji j
�Ji j Ji j

!
reside on the bond connect-

ing vertices i and j, with the tensor elements being the neg-
ative coupling energies. The dots are diagonal tensors with

= hi,
2
2

2
2 = �hi, and �1 for all other ten-

sor elements. In cases where the local field vanishes, these
dots reduce to the copy tensor in terms of the tropical algebra
which demands that all the legs have the same indices. Con-
traction of the tensor network under the tropical algebra gives
the ground state energy of the Ising spin glass. In the contrac-
tion, the � operation selects the optimal spin configuration and
the � operation sums the energy contribution from subregions

of the graph. The intermediate tensors record the minimal en-
ergy given the external tensor indices, so they corresponds to
max-marginals in the graphical model [34].

From the physics perspective, the tropical tensor net-
work naturally arises from computing the zero temper-
ature limit of the partition function Z =

P
{�} e��E .

The ground state energy, E⇤ = � lim�!1 1
� ln Z =

� lim�!1 1
� ln

P
{�}

Q
i< j e�Ji j�i� j

Q
i e�hi�i , involves ordinary

sum and product operations for the Boltzmann weights. When
taking the zero temperature limit, it is more convenient to deal
with the the exponents directly

lim
�!1

1
�

ln(e�x + e�y) = x � y,
1
�

ln(e�x · e�y) = x � y, (3)

which leads to the tropical algebra Eq. (2). The tropical rep-
resentation also corresponds to the logarithmic number sys-
tem [LW: add a citation here] which avoids the numerical
issue in dealing with exponentially large numbers on comput-
ers with finite precision numerics [22].

Moreover, one can also employ the present approach to
count the number of ground states at the same computational
complexity of computing the ground state energy. To im-
plement this, we further generalize the tensor element to be
a tuple (x, n) composed by a tropical number x and an or-
dinary number n. The tropical number records the nega-
tive energy, while the ordinary number counts the number of
minimal energy configurations. For tensor network contrac-
tion, we need the product and sum arithmetics of the tuple
(x1, n1) � (x2, n2) = (x1 + x2, n1 · n2) and (x1, n1) � (x2, n2) =
(max(x1, x2), n1 � n2) where

n1 � n2 =

8>>>>><
>>>>>:

n1 + n2 if x1 = x2

n1 if x1 > x2

n2 if x1 < x2

. (4)

Essentially, these two numbers in the tuple correspond to
leading order and the O(1/�) contributions (energy and en-
tropy) in the low temperature expansion of the log-partition
function. After contracting the tensor network, one reads out
the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as contraction
of the tropical tensor network. On a tree graph, contraction of
the tropical tensor network is equivalent to the max-sum algo-
rithm [2], i.e. the maximum a posterior version of the sum-
product (belief propagation) algorithm on graphical models.
On a general graph, when the junction tree algorithm [37] ap-
plies it can be treated as a special case of the tropical tensor
network contraction algorithm using a specific contraction or-
der ultilizing a tree decomposition of the graph.

Contraction of general tensor network belongs to the class
of #P hard problems [38], so it is unlikely to find polynomial

all other elements are 0

E* =

(eJij e−Jij

e−Jij eJij)

E(S) = − ∑
(ij)

JijSiSj − ∑
i

hi

e−βhieβhi

TN Contraction ⟶ Z(β)

Partition function of stat. mech. with complex interactions

=
single amplitude computation of quantum circuit

Quantum Circuits

Statistical Mechanics

Stat. Mech. Quantum Computer Simulation⟶

Random circuits

For a random circuit with gates drawn randomly from
universal set

• Final state

• Probability distribution

• Both real and imaginary part of are uniform
random variables on a Hilbert space with mean 0
and variance

• Porter-Thomas distribution
 with

U

|ψ⟩ = U |0⟩ =
2n

∑
i=1

ψ(si) |si⟩

PU(si) = |⟨si |ψ⟩ |2 = |ψ(si) |2

ψ(si)
2n

2−n

Prob(Np) = e−Np N = 2n

Google’s Quantum Supremacy experiments

• 53 qubits, 20 cycles

• 1 million samples in 200 Sec.

• Linear Cross Entropy Fidelity (XEB) 0.002

• Classic algorithm requires 10,000 years on Summit

≈
FXEB = 2n ∑

s∈{1,0}n

q(s)pU(s) − 1

= 2n⟨pU(s)⟩q − 1

≈
2n

m ∑
s∼q

pU(s) − 1

fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

Google’s Sycamore circuits

Fig courtesy: Huang et al 2020

Two kinds of circuits

Pattern of Supremacy circuits

Pattern of Simplifiable circuits

Arute et al, Nature 2019

Error model of Google’s circuits

• all errors in the evolving quantum state may be
characterized by a set of localized Pauli errors (bit-flips or
phase-flips)

• discrete and probabilistic

• system fidelity is well predicted by a simple model in
which the individually characterized fidelities of each gate
are multiplied together

a predictive uncorrelated error model up to a Hilbert
space of size
⟹

253

Error model of Google’s circuits

Fidelity measure

Not possible to output the (noisy) final state

• Quantum device can only sample from it

• Not possible to compute the fidelity

Approximate estimates:

• KL divergence

• Cross entropy

• Logarithm cross entropy

• Linear cross entropy

|ϕ⟩

|⟨ψ |ϕ⟩ |2

Entropy

 is the final state of the circuit

 is the distribution of bitstring

 samples are drawn from .
The joint probability of generating is

And

where

 is the entropy of .

|ψ⟩ = U |0⟩ U

PU(s) = |⟨s |ψ⟩ |2 = |ψ(s) |2 s

m S = {s1, s2, ⋯, sm} PU(s)
S

P(S) =
m

∏
i=1

P(si)

log P(S) =
m

∑
i=1

log P(si) = − mH(PU) + O(m1/2)

H(PU) = −
2n

∑
i=1

PU(si)log PU(si) PU

Cross Entropy of the true distribution

For the true output distribution of the random circuit
with a sufficient depth.

The prob. Follows the Porter-Thomas distribution

The entropy is computed as

 is the Euler’s gamma constant.

U

Prob(Np) = e−Np

H(PU) = −
2n

∑
i=1

PU(si)log PU(si) = − ∫
∞

0
dp log pN2e−Np = log N − 1 + γ

γ ≈ 0.577

Cross Entropy of the generation distribution

For a generation distribution (given e.g. by a classic
algorithm) where samples are drawn from.

The probability of observing samples on the circuit

 :cross entropy between q and .

e.g.

Notice that

q(s)
m S = {s1, s2, ⋯, sm}

S U

Prob(S) =
m

∏
i=1

PU(si)

log Prob(S) =
m

∑
i=1

log PU(si) = − mH(q, PU) + O(m1/2)

H(q, PU) = −
2n

∑
i=1

q(si)log PU(si) PU

H(quni, PU) = −
2n

∑
i=1

2−n log PU(si) = log N + γ = H0

H(PU) = log N − 1 + γ

Cross Entropy and the KL divergence

H(q, PU) = −
2n

∑
i=1

q(si)log PU(si)

= − (
2n

∑
i=1

q(si)log PU(si) −
2n

∑
i=1

q(si)log q(si) +
2n

∑
i=1

q(si)log q(si))
= − (

2n

∑
i=1

q(si)[log PU(si) − log q(si)] +
2n

∑
i=1

q(si)log q(si))
= − DKL + H(q)

DKL = H(q) − H(q, Pu) ≥ 0
⟹ H(q, Pu) ≤ H(q)

Cross Entropy Benchmark

Use difference of Cross Entropy to define how well the
generation distribution can predict the output of the
circuit

• for uniform distribution

• for true distribution

q(s)
U

ΔH(q) = H0 − H(q, PU)

= ∑
i

(q(si) −
1
N) log PU(si)

0 quni

1 PU(s)

Cross Entropy Benchmark (XEB)

Logarithm XEB

Linear XEB

FlogXEB = ⟨log N log PU(s)⟩q + γ

= ∑
s∈{1,0}n

q(s)log N log pU(s) + γ

≈
1
m ∑

s∼q

log N log pU(s) + γ

FXEB = 2n⟨pU(s)⟩q − 1

= 2n ∑
s∈{1,0}n

q(s)pU(s) − 1

≈
2n

m ∑
s∼q

pU(s) − 1

Arute et al. Nature 2019

Arute et al, Nature 2019

Arute et al, Nature 2019

Simulation methods
Full amplitudes:

• Storing full state-vector [Yao.jl, Qiskit, Qulacs, Cirq…]

• Schrödinger-Feynmann

• MPS [PRX 10, 041038 (2020)]

Single/batch amplitudes:

• PEPS based / QuickBB order (single amplitude)

• Cotengra (single amplitude)

• Alibaba ACQDP (64-amplitude batch)

• Big-batch method [arXiv:2103.03074]

• Recursive multi-tensor contraction [aXiv:2108.05665]

• Sparse-state method [arXiv:2111.03011]

Full amplitude simulations

Once you can store the state-vector, you can simulate the
circuit with an arbitrary depth.

Because the tree width of the 3D graph
is influenced heavily by the size of the boundary

Full amplitude simulation: exponential space complexity

Tensor network methods

Markov, Shi arXiv:quant-ph/0511069
Treat tensor networks as graphical models

TN and graphical model

• Treat tensor networks as graphical models

• Treat tensor network contraction as node elimination in graphical
models

• Use heuristics (e.g. QuickBB) for finding an elimination order

Slicing

• Treat tensor networks as graphical models

• Use slow-heuristics (e.g. QuickBB) for find a elimination order

• Dynamic slicing

Partitioning-based contraction order

Amplitudes to samples

• Small uncorrelated batch (about 10) for one
perfect sample

• Frugal sampling

Approximate simulation using MPSs

Amplitudes to samples

• Small correlated batch (about 10) for one
perfect sample

• Frugal sampling

Combining partition-order and Frugal sampling

• Small batch (64) for one perfect sample

• Frugal sampling

• Single tensor-network contraction for each batch

Simulated annealing for order/slicing finding

Local moves Verifying the Sycamore circuits up to 16 cycles

Single-amplitude

Left boundary condition:

Product state

Right boundary condition:

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Full-amplitude Big-batch

The big-batch method

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)

4 kinds of boundary conditions

Single-amplitude

Batch-amplitude

Full-amplitude

Contraction order

Time complexity: d3 + d3 + d3 + d2 Time complexity: d2 + d2 + d2 + d2

1 2 3 4 51 2 3 4 5

Contraction order and contraction tree

Time complexity: d3 + d3 + d3 + d2 Time complexity: d2 + d2 + d2 + d2

1 2 3 4 51 2 3 4 5

1 2 3 4 5

12

123
1234

12345

1 2 3 4 5

45

345

2345

12345

Complexity of the contraction tree

Space complexity:

• size of the largest tensor in the contraction tree

• Optimal space complexity: , is the tree width of the graph

Time complexity:

• Time complexity of each node is the product of dimensions associated with edges

• Time complexity of the contraction tree is the time complexity of each node (usually dominated
by the largest one)

exp(W) W

1 2 3 4 5

123

4512

12345

Find a contraction tree to minimize the complexity

Greedy algorithms

Partitioning based algorithms [Gray/Kourtis 2021]

Simulated-annealing-based algorithm [Kalachev et al 2021]

1 2 3 4 5

123

4512

12345

Slicing

+

=

∑
i

∑
j

∑
k

∑
l

∑
m

AikmBijCjklDlm =
2

∑
k=1

∑
i

∑
j

∑
l

∑
m

AikmBijCjklDlm

k = 1 k = 2

=

The index k is sliced and the contraction of the original tensor network
becomes summation of sub-tasks dk

Slicing

big-batch of amplitudes using the big-head algorithm

Head

Tail

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)

Correlated bitstrings

A big batch of amplitudes

The whole space, containing amplitudes253

A sub-space, containing amplitudes221

qubits to simulate

Full
amplitudes 49 qubits

Taihu light
supercomputer 

[Li et al. IEEE PDS 2019]

Big-batch
algorithm

50 qubits 100 GPUs

43-qubit Sycamore circuit

Google’s
paper:

Julich Supercomputer
100,000 cores 250T meomory

Big-batch

algorithm
1 GPU

Big-batch full amplitude simulation⟶

F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)

Spoofing the Linear Cross Entropy Benchmark (XEB)
For supremacy circuits with
53 qubits and 20 cyclesGoogle量子霸权线路模拟主要结果

arXiv:2103.03074

• 获得了200万末态振幅和概率，其分布服从Porter-Thomas分布
• 从中采样出了100万构型，XEB fidelity为0.739，远高于Google的数据

 exact probabilities  
verifying the Porter-Thomas distribution

221 PU(s)

FXEB

Post-sampling 
Selecting 1 million bitstrings, XEB=0.739

Google量子霸权线路模拟主要结果

arXiv:2103.03074

• 获得了200万末态振幅和概率，其分布服从Porter-Thomas分布
• 从中采样出了100万构型，XEB fidelity为0.739，远高于Google的数据

FXEB = 2n ∑
s∈{1,0}n

q(s)pU(s) − 1

= 2n⟨pU(s)⟩q − 1

≈
2n

m ∑
s∼q

pU(s) − 1

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)

Computational cost

Computational
complexity

Computation
hardward Time

Google [Arute et. al., 2019]

(Estiamted) ——— Summit Super
Computer 10,000 Years

IBM [Pednault et. al., 2019]

(Estimated)
Summit Super

Computer (all disks) 2.5 days

Alibaba [Huang et. al., 2020]
(Estimated)

Summit Super
Computer 20 days

Ours [arXiv:2103.03074]

(Computed)

Correlated sampling

60 NVIDIA GPUs 5 days4.51 × 1018

1.33 × 1022

1.18 × 1021

F. Pan and PZ, arXiv:2103.03074 (2021)
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)

Parallel Computation with GPUs

CPU GPU

• NVIDIA Tesla V100 FP32 performance:
14.13 TFLOPS

• NVIDIA Tesla A100 FP32 performance:
19.5 TFLOPs

• Intel CPUs: 3 GFlops / core , 32 Cores

Implementing the big-batch approach on a super computer
reduces the computation time from 5 days to 314 seconds

Differences

Big-batch simulation + sampling Sycamore hardware sampling

Correlated samples Uncorrelated samples

Exact sub-space simulation Noisy full-space simulation

Feng Pan, Keyang Chen, PZ ,arXiv:2111.03011

Single-amplitude Sparse state

Left boundary condition:

Product state

Right boundary condition:

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Full-amplitude Big-batch

4 kinds of boundary conditions

Single-amplitude

Batch-amplitude Sparse-state

Full-amplitude

Contractions with the sparse state

• We want only amplitudes for bitstrings {111, 010, 000}

• Contracting the red part in (a) merges qubits 2 and 3,
resulting to (b), where only {11,10,00} sub-bitstrings are
necessary.

• Contracting the red part in (b) gives the final results
containing only the required bitstrings.

Feng Pan, Keyang Chen, PZ ,arXiv:2111.03011

Sparse state
 uncorrelated groups 

each group contains 64 samples
220

Importance sampling

Single TN contraction

 uncorrelated samples 
with fidelity = 1

220

Solving the uncorrelated sampling problem

From group to a representative bitstring

Importance sampling

• Each group contains 64 bitstrings , with
probability associated with the sparse state .

• Loop over bitstrings from the . At the -th bitstring,
replace the current bitstring by with probability

.

{Si | i = 1,...,64}
{Pi = |ψi |

2 } ψ

64 s1 i
si

min(1, Pi /Pcurrent)

• It’s nothing but Metropolis-Hasting
• Satisfies Detailed Balance
• is large enough for the PT distribution64

1. Using approximate state, e.g. MPS

2. Sampling from a mixed distribution (a small portion
from true distribution + a large part from pure noise)

• Noisy state:

• 2000 bit strings with from and 998000 from
uniform distribution

3. Summing over a fraction of paths in the path-integral
representation.

ρ = f |ψ⟩⟨ψ | + (1 − f)
1
2n

|ψ⟩⟨ψ |

Trading off fidelity for computational complexity

Drilling a hole breaks 2 qubit lines inserting 2 error gates

Drilling 4 holes

⟶ ⟶

E = (1
0) ⊗ (1

0) = (1 0
0 0) =

1
2

I +
1
2

σz

⟶ F ≈ 2−8 = 0.00390625

Trading off fidelity for computational complexity

Head-tail point of view to the hole-drilling

Exploring low-rank structures in the fSim gates

 Keep fidelity

fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

Decrease fidelity
by a factor of

(sin2(θ) + 1)/2
21

∏
i=1

[(sin2(θi) + 1)/2] ≈ 0.9565

Festimate = 2−8 × 0.9565 ≈ 0.0037

F. Pan, PZ, arXiv:2103.03074 (2021) , Phys. Rev. Lett. 129, 090502

Parallel Computation with GPU

CPU GPU

GPU efficiency

GPU efficiency

• NVIDIA Tesla V100 FP32 performance: 14.13 TFLOPS

• NVIDIA Tesla A100 FP32 performance: 19.5 TFLOPs

• But with limited Bandwidth: 900GB/s and 1.6TB/s

6 for multiplication + 2 for addition, with Complex64 (FP32 + FP32)

Trade GPU efficiency with FLOPs: Branch Merge

Low time complexity
Low efficiency

Low time complexity
Low efficiency

3.87 x Time Complexity
4.4% 38.4%⟹

Histogram of probabilities

Histogram of approximate
bitstring probabilities

p(s) = | ̂ψ (s) |2 /𝒩s

Fidelity vs. norm
in the path integral interpretation

Validation of the approach using smaller Sycamore circuits

Sycamore EFGH circuits with 30 qubits, 14 cycles
We obtain bitstring probabilities and uncorrelated samples, averaged

over 15 sets of samples.
226 220

Verifications with different sizes

Sycamore EFGH circuits with 14 cycles, and a different number of qubits.
We obtain bitstring probabilities and uncorrelated samples, averaged

over 15 sets of samples.
226 220

Dependence on the group size

XEB as a function of group size l for Sycamore EFGH circuits with 30 qubits, 14 cycles
We obtain bitstring probabilities and uncorrelated samples, averaged

over 15 sets of samples.
226 220

Importance

Verification of the entropy

The exact entropy of the approximate state distribution of compared with the
entropy estimated using uncorrelated samples generated using the sampling methodt,
for K cuts in the Sycamore circuits with n = 30 qubits, m = 14 cycles, and EFGH
sequence. Each data point is averaged over 15 independent sets of samples of size .

|ψK(s) |2

220

220

Computational cost

Computational
complexity

Computation
hardward Time

Google [Arute et. al., 2019]

(Estiamted) ——— Summit Super
Computer 10,000 Years

IBM [Pednault et. al., 2019]

(Estimated)
Summit Super

Computer (all disks) 2.5 days

Alibaba [Huang et. al., 2020]
(Estimated)

Summit Super
Computer 20 days

Ours [arXiv:2103.03074]

(Computed)

Correlated sampling

60 NVIDIA GPUs 5 days

Ours [arXiv: 2111.03011]  
(Computed)

Uncorrelated sampling

512 NVIDIA GPUs 15 hours

Exa-Supercomputer

(Estimate) Dozens of seconds

4.51 × 1018

1.33 × 1022

3.49 × 1018

1.18 × 1021

References:

F. Pan, K.Chen, PZ, arXiv:2111.03011 (2021), Phys. Rev. Lett. 128, 030501
F. Pan, PZ, arXiv:2103.03074 (2021) , Phys. Rev. Lett. 129, 090502

