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Outlines

Simulation methods of general quantum circuits 

• Full amplitude 

• Single amplitude 

• Approximate simulations: MPS, neural networks, path 
integrals 

• Simulation of stabilizer circuits 

Simulation of Google’s Sycamore quantum circuits 

• The big-batch method 

• The sparse-state method



Simulation of quantum circuits

Computing amplitudes 

• Full amplitudes  

• Single amplitude 

Computing expectations 

• Energy expectations  
(VQE, QAOA) 

Sampling problem 

• Sycamore problem



Quantum circuits

•Start from the initial state 

•Applying unitary operators

Full-amplitude simulation: store and update the state vector



States and Gates are tensors

|ψinit⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ Rank one
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https://ai.googleblog.com/2018/05/the-question-of-quantum-supremacy.html

States and Gates are tensors



Diagram notation of tensor networks

Only Linear operations !!!



Tensor networks in physics:  
imposing prior of physical wave functions



In Physics Out of Physics Diagram

grouping of indices unfolding, matricization

splitting of indices tensorizing

matrix product states tensor train 
decomposition

periodic boundary 
MPS

tensor chain 
decomposition

tree tensor networks hierarchical Tucker 
decompostion

single-site DMRG alternating least square

two-site DMRG modified alternating least 
square



Einsum notations of tensor network contractions

Space complexity: the dimension of the largest tensor 

Time complexity: product of dimensions of all unique indices

c = einsum(A,B,”j,j”)

C = einsum(A,B,”ij,jk->ik”)

D = einsum(A,B,C,”ij,jk,kl”)

c = A ⋅ B

C = AB

D = ABC
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Computational complexity 

Space complexity: the dimension of the largest tensor 

Time complexity: product of dimensions of all unique indices

c = A ⋅ B

C = AB

D = ABC

A B

j j
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Automatically detecting structures in the data

106 data points in a vector

0.000, 0.100, 0.199, 0.296, 0.389, 0.479, 0.565, 0.644, 0.717, 0.783, 
0.841, 0.891, 0.932, 0.964, 0.985, 0.997, 1.000, 0.992, 0.974, 0.946, 
0.909, 0.863, 0.808, 0.746, 0.675, 0.598, 0.516, 0.427, 0.335, 0.239, 
0.141, 0.042, -0.058, -0.158, -0.256, -0.351, -0.443, -0.530, -0.612,  
…… 
…… 
-0.688, -0.757, -0.818, -0.872, -0.916, -0.952, -0.978, -0.994, -1.000, 
-0.996, -0.982, -0.959, -0.926, -0.883, -0.832, -0.773, -0.706, -0.631, 
-0.551, -0.465, -0.374, -0.279, -0.182, -0.083, 0.017, 0.117, 0.215, 
0.312, 0.405, 0.494, 0.578, 0.657, 0.729, 0.794, 0.850, 0.899, 0.938
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Automatically detecting structures in the data

106 data points in a vector

⇡
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Two problems

Tensor decomposition                       (Design / Learn a circuit)

⇡

Tensor contraction                                        (Simulate a circuit)

⇡





Gate composition

= =

=



Parallel operations

=

=

=



Full-amplitude simulation: the Schrödinger algorithm

HiQ 

Cirq 

Yao.jl 

Qiskit 

Qulacs 

Azure Quantum 

Quantum Paddle



|ψ⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ Rank one

1

2 [1 1
1 −1]=

= (1
0)

Each dimension of the state vector is independently operated
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0) =
1

2 (1
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=

The Schrödinger algorithm



|ψ⟩ = | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ Rank one

The Schrödinger algorithm

• Permute+ reshape the tensor to a matrix; reshape the gate to a matrix;  
apply matrix multiplications 

• Use einsum, tensordor …



|ψ⟩ Rank > 1

The Schrödinger algorithm



Rank > 1|ψ⟩

The Schrödinger algorithm



Rank > 1|ψ⟩

The Schrödinger algorithm



Rank = 4 |ψ⟩

The Schrödinger algorithm



#qubits Space dimension Space complexity Storage Device

10 16 K bytes

20 16 M bytes

30 16 G bytes Laptop

40 16 T bytes Cluster

50 16 P bytes Supercomputer

53 128 P bytes All hard disks of 
supercomputer

210 = 1024

220 = 60536

230 = 1073741824

240 = 1099511627776

250 = 1125899906842624

253 = 9007199254740992

The Schrödinger algorithm



The Schrödinger-Feynmann algorithm



The Schrödinger-Feynmann algorithm



The Schrödinger-Feynmann algorithm



The Schrödinger-Feynmann algorithm



+

The Schrödinger-Feynmann algorithm



+

The Schrödinger-Feynmann algorithm



+

++

The Schrödinger-Feynmann algorithm



+

++

The Schrödinger-Feynmann algorithm



Problem of the Schrödinger-Feynmann algorithm: 
Complexity grows exponential with number of cuts



MPS algorithm

|ψ⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ Rank one



MPS algorithm

|ψ⟩ = | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ ⊗ | + ⟩ Rank one



|ψ⟩ Rank > 1

MPS algorithm



Rank > 1|ψ⟩

MPS algorithm



Rank > 1|ψ⟩

MPS algorithm



Rank = 4 |ψ⟩

MPS algorithm



Canonical forms of MPS
Analogous to the Tucker decomposition and HOSVDs, MPS has the 
benefits of orthogonality.

=Benefits 

• Fixed gauge, no ambiguity 

• Easy norm computation 

• Easy expectation/
correlation computation 

• Always good conditioned

= =

=

=



Problem of MPS simulation

SWAP

Non-local operators

2D Layout



Results of MPS simulations of 2D circuits with CZ gates

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Results of MPS simulations of 2D circuits with CZ gates

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

(1 0
0 0) (0 1

0 0)
(0 0

1 0) (1 0
0 −1)

(1 0
0 1) (0 0

0 0)
(0 0

0 0) (1 0
0 −1)

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 −1

Singular values:  
[ 2, 2,0,0]

χ = 2



Results of MPS simulations of 2D circuits with fSim gates

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

1 0 0 cos θ
0 0 −i sin θ 0
0 −i sin θ 0 0

cos θ 0 0 e−iϕ

Singular values  | |2

[1,1, sin2(θ), sin2(θ)]

fSim gate has a flat prior fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

χ = 4



Results of MPS simulations of Sycamore circuits

Our results



Results of Group MPS simulations of Sycamore circuits

Our results



Neural network simulation of quantum circuits

M. Medvidovic and G. Carleo, npc Quantum information 7, 1 (2021)

B. Jonsson, B. Bauer, G. Carleo, arXiv:1808.05232 (2018)

Tensor network (e.g. MPS) states: 
   low-rank, weak entanglements 
   efficient and accurate to compute inner product 

Neural network states 
   high-rank 
   difficult to compute inner products, need sampling 
   variational optimization with a loss function D( |ψ⟩, A |ψ⟩)



S. Li, F. Pan, P. Zhou, PZ, PRB 104, 075154 (2021)

Neural network simulation of quantum circuits



Deep Boltzmann Machines

2D Tensor Network

S. Li, P. Zhou, F. Pan, PZ, Phys. Rev. B 104, 075154 (2021)



Neural network simulation of quantum circuits

M. Medvidovic and G. Carleo, npc Quantum information 7, 1 (2021)

B. Jonsson, B. Bauer, G. Carleo, arXiv:1808.05232 (2018)

Tensor network (e.g. MPS) states: 
   low-rank, weak entanglements 
   efficient and accurate to compute inner product 

Neural network states 
   high-rank 
   difficult to compute inner products, need sampling 
   variational optimization with a loss function D( |ψ⟩, A |ψ⟩)



Tensor network contraction and Path Integral

⟨ψ |sm⟩ = ∑
s1

∑
s2

⋯∑
sm−1

m

∏
t=1

⟨st−1 |Ut |st⟩

s0 s2 s3 sms1

U2 U3 UmU1 U2

st =
n

∏
i=1

st
i

Totally  paths2n(m−2)



Tensor network contraction and complex Ising model

U2 U3 UmU1 U2

Final state = Marginals of complex Ising model 

Single amplitude  = Partition function of complex Ising model ⟨ψ |sm⟩



Final state and statistical mechanics model

U2 U3 UmU1 U2

sm
4

sm
3

sm
2

sm
1

s0
3

s0
4

s0
2

s0
1

s1
3

s1
4

s1
2

s1
1

s2
3

s2
4

s2
2

s2
1

s2
3

s2
4

s2
2

s2
1

P(sm
1 , sm

2 , sm
3 , ⋯, sm

n ) =
1
Z ∑

s1

∑
s2

⋯∑
sm−1

m

∏
t=1

⟨st−1 |Ut |st⟩

2

=
1
Z ∑

s1
1

∑
s1
2

⋯∑
sm−1
n

e−E(s1
1,s2

2,⋯,sn
m)

2

Single amplitude  = Energy of complex  Stat. Mech.⟨ψ |sm⟩



Classical variational / sampling methods ?

Energy functions are difficult to compute. 

Sign problem for sampling hidden variables. 

No variational principles for joint amplitude of all variables.

U2 U3 UmU1 U2

sm
4

sm
3

sm
2

sm
1

s0
3

s0
4

s0
2

s0
1
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3

s1
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2
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1
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3
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4
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2
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1
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4
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2

s2
1



Trading fidelity with complexity

Using approximate state, e.g. MPS 

Sampling from a mixed distribution ( a small portion from 
true distribution + a large part from pure noise) 

• Noisy state:  

• 2000 bit strings with from  and 998000 from 
uniform distribution 

Summing over a fraction of paths in the path-integral 
representation.

ρ = f |ψ⟩⟨ψ | + (1 − f )
1
2n

|ψ⟩⟨ψ |



Simulation of stabilizer circuits
Stabilizer circuits:  

• Gates are 

CNOT  : create entanglements 

Hadamard  : create superpositions 

Cphase : add complex phases 

• Stabilizer states from  

Creates complex entanglements, but not universal 

Gottesman-Knill Theorem: Stabilizer circuits can be simulated in polynomial time: 
storing stabilizers (generators of the stabilizer sub-group) rather than the 
state

Cx =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

H =
1

2 (1 1
1 −1)

S = (1 0
0 i)

|000⋯0⟩



Stabilizers: single qubit

       

 

 

      

: Z stabilizes ,    : X stabilizes  

Stabilizer group for  is =  
Stabilizer group for  is =

I = (1 0
0 1) X = (0 1

1 0) Y = (0 −i
i 0 ) Z = (1 0

0 −1)
X2 = Y2 = Z2 = I2 = I

XY = iZ, YX = − iZ, YZ = iX, ZY = − iX, ZX = iY, XZ = − iY

|0⟩ = (1
0) |1⟩ = (0

1) | + ⟩ =
1

2 (1
1) | − ⟩ =

1

2 ( 1
−1)

Z |0⟩ = |0⟩ |0⟩ X | + ⟩ = | + ⟩ | + ⟩

|0⟩ {I, Z} ⟨Z⟩
| + ⟩ {I, X} ⟨X⟩



Stabilizers: two and more qubits

GHZ state:  

 , ,  ,    

Stabilizer group for  is   

Stabilizer group for  is 

 

The n-qubit stabilizer states can be determined by a stabilizer 
group of size , which has  generators. 

Rather than storing the state vector  with  parameters,  
storing the  stabilizers.

|ϕ+⟩ =
1

2
( |00⟩ + |11⟩)

Z1Z2 |ϕ+⟩ = |ϕ+⟩ X1X2 |ϕ+⟩ = |ϕ+⟩ −Y1Y2 |ϕ+⟩ = |ϕ+⟩ I1I2 |ϕ+⟩ = |ϕ+⟩

|ϕ+⟩ {II, XX, ZZ, − YY} = ⟨XX, ZZ⟩

|ϕ−⟩ =
1

2
( |00⟩ − |11⟩)

{II, − XX, ZZ, YY} = ⟨−XX, ZZ⟩

2n n

|ϕ⟩ 2n

n



Stabilizers: check matrix representation

 rows, each row indicate a stabilizer 

 columns, corresponding to  qubits 

There is also a overall phase (not shown here)

l

n n

Stabilizers X checks Z checks

XIIIII 10000 00000

ZIIIII 00000 10000

IYIIII 01000 01000

IIXZI 00100 00010

P1 ≅ V4 ≅ C2 × C2 I ↦ 00 X ↦ 10 Z ↦ 01 Y ↦ 11



Stabilizer circuits

Now consider the state after a unitary operator  applied 
on an initial state  which is stabilized by group  with 

. 

 

•  stabilizes .  

• If  is also a Pauli operator,  is determined 
by stabilizers specified by . 

• No need to store , just trace the change of 

U
|ψ⟩ S

g ∈ S, g |ψ⟩ = |ψ⟩

U |ψ⟩ = Ug |ψ⟩ = UgU†Ug |ψ⟩ = (UgU†)(U |ψ⟩)

UgU† U |ψ⟩

UgU† U |ψ⟩
UgU†

U |ψ⟩ S



Stabilizer circuits

For example:  

Hadamard gate :  
 

Controlled-Not gate :  
 

Phase gate S: 
 

Actually,  generates , the normalizer of , Pauli group 
on  quits 
i.e. for ,     

 is also known as Clifford group 

H
HXH† = Z; HYH† = − Y; HZH† = X

U
CxX1C†

x = X1X2; CxX1C†
x = X1; CxZ1C†

x = Z1; CxZ2C†
x = Z1Z2

SXS† = Y; SZS† = Z .

{H, Cx, S} N(Gn) Gn
n

U ∈ ⟨H, Cx, S⟩ UGnU† = Gn
N(Gn)



Simulation of stabilizer circuits

To apply  to the  qubit:  

• Swap the  row of the X check to the Z check 

To apply  to the  qubit:  

• Bitwise XOR the  row of the X check into the  row of  the Z check 

To apply  from the  qubit to the  qubit:  

• Bitwise XOR the  row of the X check into the  row of  the X check 

• Bitwise XOR the  row of the Z check into the  row of the Z check 

Measurements can also be conveniently (commute or anti-commute with stabilizers).

H ith

ith

S ith

ith ith

Cx ith jth

ith jth

jth ith

Stabilizers X checks Z checks

XIIIII 10000 00000

ZIIIII 00000 10000

IYIIII 01000 01000

IIXZI 00100 00010



Google’s Sycamore circuits

53 qubits, 20 cycles 

fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ



Single qubit gates of Sycamore

Each one is a -rotation around an axis lying on the equator of the Bloch sphere.  
Up to a global phase, the gates are 

π/2

single-qubit Clifford gates }
non-Cliford gate. 



Quantum supremacy

A specific computational task 

• No matter whether it is “useful” 

Beyond the capabilities of classical super-computers 

In the NISQ era:  

• Noisy (no error correction) 

• Circuits are not so deep 

• Fidelity of gates are high



Aaronson and Chen’s conjecture: 

A random circuit  with  qubits 
and depth  , no classical 
algorithm can guess if  

 

With probability  

U n
∼ n

⟨0n |U |0n⟩ > Median (⟨0n |U |0n⟩)
1
2

+ O(2−n)

Quantum supremacy

P

NP

P#P

PSPACE

Easy

Hard

PH

EXP

BQP 

S Aaronson, L Chen,  arXiv:1612.05903

https://scholar.google.com/citations?user=T_OhvOsAAAAJ&hl=zh-CN&oi=sra


Statistical Mechanics

S = {+1,�1}n

P (S) =
1

Z
e��E(S) Z =

X

s

e��E(S)

" " " # " # # # # # " "



• Estimating the free energy 

• Computing observables / 
order parameters 

• Sampling

Statistical Mechanics

P

NP

P#P

PSPACE

Easy

Hard

PH

EXP

S = {+1,�1}n

P (S) =
1

Z
e��E(S) Z =

X

s

e��E(S)

" " " # " # # # # # " "



Any discrete probability distribution is a tensor,

Tensor network for Statistical Mechanics

S = {+1,�1}n " " " # " # # # # # " "

decomposed using tensor networks.

<latexit sha1_base64="kO6lxo6UBc25+CyaZGaTyfF2oDQ="></latexit>

P (S) =
1

Z
e��E(S) =

1

Z
eP

Computing normalization of a discrete probability distribution

Z =
��� eP

���
1
= eP · 1>

2n = eP ·
✓

1
1

◆
⌦

✓
1
1

◆
⌦ · · ·⌦

✓
1
1

◆

| {z }
n

,

<latexit sha1_base64="gR+7ygFOl9NWUGX3qdISe0P1HtQ="></latexit>
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Tensor networks for the Ising spin glasses

2

FIG. 1. (a) The tensor network representation of a square lattice
Ising spin glass. (b) An equivalent circuit representation used for the
practical simulation. See texts for definition of the symbols.

Tropical Tensor Network– The tropical algebra is defined
by replacing the usual sum and product operators for ordi-
nary real numbers with the max and sum operations respec-
tively [29]

x � y = max(x, y), x � y = x + y. (2)

One sees that �1 acts as zero element for the tropical number
since �1 � x = x and �1 � x = �1. On the other hand, 0
acts as the multiplicative identity since 0� x = x. The � and �
operators still have the commutative, associative, and distribu-
tive properties. However, since there is no additive inverse, the
� and � and operations define a semiring over R[ {�1}. The
semiring formulation unifies a large number of inference al-
gorithms in the graphical models based on dynamic program-
ming [30, 31]. Recently, there have been e↵orts in combing
the semiring algebra with modern deep learning frameworks
with optimized tensor operations and automatic di↵erentia-
tion [32, 33].

One can consider tensor networks whose elements are trop-
ical numbers with the algebra Eq. (2). Since the elementary
operations involved in contracting tensor networks are just
sum and product, contraction of tropical tensor networks is
well defined. One can use such contraction to solve the ground
state of the Ising spin glass. For example, consider the Ising
spin glasses Eq. (1) defined on two dimensional square lattice,
the tropical tensor network is shown in Fig. 1(a). The ten-
sor network representation corresponds to the factor graph of
the spin glass graphical model [30]. There are 2 ⇥ 2 tropical

tensors =

 
Ji j �Ji j
�Ji j Ji j

!
reside on the bond connect-

ing vertices i and j, with the tensor elements being the neg-
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of the graph. The intermediate tensors record the minimal en-
ergy given the external tensor indices, so they corresponds to
max-marginals in the graphical model [34].
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Moreover, one can also employ the present approach to
count the number of ground states at the same computational
complexity of computing the ground state energy. To im-
plement this, we further generalize the tensor element to be
a tuple (x, n) composed by a tropical number x and an or-
dinary number n. The tropical number records the nega-
tive energy, while the ordinary number counts the number of
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function. After contracting the tensor network, one reads out
the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
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product (belief propagation) algorithm on graphical models.
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state of the Ising spin glass. For example, consider the Ising
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issue in dealing with exponentially large numbers on comput-
ers with finite precision numerics [22].

Moreover, one can also employ the present approach to
count the number of ground states at the same computational
complexity of computing the ground state energy. To im-
plement this, we further generalize the tensor element to be
a tuple (x, n) composed by a tropical number x and an or-
dinary number n. The tropical number records the nega-
tive energy, while the ordinary number counts the number of
minimal energy configurations. For tensor network contrac-
tion, we need the product and sum arithmetics of the tuple
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n1 � n2 =
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Essentially, these two numbers in the tuple correspond to
leading order and the O(1/�) contributions (energy and en-
tropy) in the low temperature expansion of the log-partition
function. After contracting the tensor network, one reads out
the ground state energy and degeneracy from the two elements
of the tuple. In this way, one can count the number of opti-
mal solutions exactly without explicitly enumerating the solu-
tions [35, 36].

Contract Tropical Tensor Networks– We have formulated
the computation of the ground state energy and the ground
state degeneracy of the Ising spin glass Eq. (1) as contraction
of the tropical tensor network. On a tree graph, contraction of
the tropical tensor network is equivalent to the max-sum algo-
rithm [2], i.e. the maximum a posterior version of the sum-
product (belief propagation) algorithm on graphical models.
On a general graph, when the junction tree algorithm [37] ap-
plies it can be treated as a special case of the tropical tensor
network contraction algorithm using a specific contraction or-
der ultilizing a tree decomposition of the graph.

Contraction of general tensor network belongs to the class
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=  
single amplitude computation of quantum circuit

Quantum Circuits
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Random circuits

For a random circuit  with gates drawn randomly from 
universal set 

• Final state                          

• Probability distribution     

• Both real and imaginary part of  are uniform 
random variables on a  Hilbert space with mean 0 
and variance  

• Porter-Thomas distribution 
  with 

U

|ψ⟩ = U |0⟩ =
2n

∑
i=1

ψ(si) |si⟩

PU(si) = |⟨si |ψ⟩ |2 = |ψ(si) |2

ψ(si)
2n

2−n

Prob(Np) = e−Np N = 2n



Google’s Quantum Supremacy experiments

• 53 qubits, 20 cycles  

• 1 million samples in 200 Sec. 

• Linear Cross Entropy Fidelity (XEB)  0.002 

• Classic algorithm requires 10,000 years on Summit

≈
FXEB = 2n ∑

s∈{1,0}n

q(s)pU(s) − 1

= 2n⟨pU(s)⟩q − 1

≈
2n

m ∑
s∼q

pU(s) − 1

fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ



Google’s Sycamore circuits

Fig courtesy: Huang et al 2020



Two kinds of circuits

Pattern of Supremacy circuits

Pattern of Simplifiable circuits

Arute et al, Nature 2019



Error model of Google’s circuits

• all errors in the evolving quantum state may be 
characterized by a set of localized Pauli errors (bit-flips or 
phase-flips)  

• discrete and probabilistic 

• system fidelity is well predicted by a simple model in 
which the individually characterized fidelities of each gate 
are multiplied together  

a predictive uncorrelated error model up to a Hilbert 
space of size   
⟹

253



Error model of Google’s circuits



Fidelity measure

Not possible to output the (noisy) final state  

• Quantum device can only sample from it 

• Not possible to compute the fidelity  

Approximate estimates: 

• KL divergence 

• Cross entropy 

• Logarithm cross entropy 

• Linear cross entropy

|ϕ⟩

|⟨ψ |ϕ⟩ |2



Entropy

 is the final state of the circuit  

 is the distribution of bitstring  

 samples are drawn from .  
The joint probability of generating  is 

                  

And     

where 

                 is the entropy of .

|ψ⟩ = U |0⟩ U

PU(s) = |⟨s |ψ⟩ |2 = |ψ(s) |2 s

m S = {s1, s2, ⋯, sm} PU(s)
S

P(S) =
m

∏
i=1

P(si)

log P(S) =
m

∑
i=1

log P(si) = − mH(PU) + O(m1/2)

H(PU) = −
2n

∑
i=1

PU(si)log PU(si) PU



Cross Entropy of the true distribution

For the true output distribution of the random circuit  
with a sufficient depth.  

The prob. Follows the Porter-Thomas distribution 
 

The entropy is computed as 

 

 is the Euler’s gamma constant.

U

Prob(Np) = e−Np

H(PU) = −
2n

∑
i=1

PU(si)log PU(si) = − ∫
∞

0
dp log pN2e−Np = log N − 1 + γ

γ ≈ 0.577



Cross Entropy of the generation distribution

For a generation distribution  (given e.g. by a classic 
algorithm) where  samples  are drawn from.  

The probability of observing samples  on the circuit 

 

 

 :cross entropy between q and . 

e.g.  

Notice that

q(s)
m S = {s1, s2, ⋯, sm}

S U

Prob(S) =
m

∏
i=1

PU(si)

log Prob(S) =
m

∑
i=1

log PU(si) = − mH(q, PU) + O(m1/2)

H(q, PU) = −
2n

∑
i=1

q(si)log PU(si) PU

H(quni, PU) = −
2n

∑
i=1

2−n log PU(si) = log N + γ = H0

H(PU) = log N − 1 + γ



Cross Entropy and the KL divergence

               

  

H(q, PU) = −
2n

∑
i=1

q(si)log PU(si)

= − (
2n

∑
i=1

q(si)log PU(si) −
2n

∑
i=1

q(si)log q(si) +
2n

∑
i=1

q(si)log q(si))
= − (

2n

∑
i=1

q(si)[log PU(si) − log q(si)] +
2n

∑
i=1

q(si)log q(si))
= − DKL + H(q)

DKL = H(q) − H(q, Pu) ≥ 0
⟹ H(q, Pu) ≤ H(q)



Cross Entropy Benchmark

Use difference of Cross Entropy to define how well the 
generation distribution  can predict the output of the 
circuit  

 

•  for uniform distribution  

•  for true distribution 

q(s)
U

ΔH(q) = H0 − H(q, PU)

= ∑
i

(q(si) −
1
N ) log PU(si)

0 quni

1 PU(s)



Cross Entropy Benchmark (XEB)

Logarithm XEB 

                  

Linear XEB 

                    

FlogXEB = ⟨log N log PU(s)⟩q + γ

= ∑
s∈{1,0}n

q(s)log N log pU(s) + γ

≈
1
m ∑

s∼q

log N log pU(s) + γ

FXEB = 2n⟨pU(s)⟩q − 1

= 2n ∑
s∈{1,0}n

q(s)pU(s) − 1

≈
2n

m ∑
s∼q

pU(s) − 1

Arute et al. Nature 2019
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Simulation methods
Full amplitudes: 

• Storing full state-vector [Yao.jl, Qiskit, Qulacs, Cirq…] 

• Schrödinger-Feynmann 

• MPS [PRX 10, 041038 (2020)] 

Single/batch amplitudes: 

• PEPS based / QuickBB order (single amplitude) 

• Cotengra (single amplitude)  

• Alibaba ACQDP (64-amplitude batch) 

• Big-batch method [arXiv:2103.03074] 

• Recursive multi-tensor contraction [aXiv:2108.05665] 

• Sparse-state method [arXiv:2111.03011]



Full amplitude simulations

Once you can store the state-vector, you can simulate the 
circuit with an arbitrary depth.

Because the tree width of the 3D graph  
is influenced heavily by the size of the boundary



Full amplitude simulation: exponential space complexity



Tensor network methods

Markov, Shi arXiv:quant-ph/0511069 
Treat tensor networks as graphical models



TN and graphical model

• Treat tensor networks as graphical models 

• Treat tensor network contraction as node elimination in graphical 
models 

• Use heuristics (e.g. QuickBB) for finding an elimination order



Slicing

• Treat tensor networks as graphical models 

• Use slow-heuristics (e.g. QuickBB) for find a elimination order 

• Dynamic slicing



Partitioning-based contraction order



Amplitudes to samples

• Small uncorrelated batch (about 10) for one 
perfect sample 

• Frugal sampling



Approximate simulation using MPSs



Amplitudes to samples

• Small correlated batch (about 10) for one 
perfect sample 

• Frugal sampling



Combining partition-order and Frugal sampling

• Small batch (64) for one perfect sample 

• Frugal sampling 

• Single tensor-network contraction for each batch



Simulated annealing for order/slicing finding

Local moves Verifying the Sycamore circuits up to 16 cycles



Single-amplitude

Left boundary condition:

Product state

Right boundary condition:

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Full-amplitude Big-batch

The big-batch method

F. Pan and PZ, arXiv:2103.03074 (2021) 
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



4 kinds of boundary conditions

Single-amplitude

Batch-amplitude

Full-amplitude



Contraction order

Time complexity: d3 + d3 + d3 + d2 Time complexity: d2 + d2 + d2 + d2

1 2 3 4 51 2 3 4 5



Contraction order and contraction tree

Time complexity: d3 + d3 + d3 + d2 Time complexity: d2 + d2 + d2 + d2

1 2 3 4 51 2 3 4 5

1 2 3 4 5

12

123
1234

12345

1 2 3 4 5

45

345

2345

12345



Complexity of the contraction tree

Space complexity:  

• size of the largest tensor in the contraction tree 

• Optimal space complexity: ,  is the tree width of the graph 

Time complexity: 

• Time complexity of each node is the product of dimensions associated with edges 

• Time complexity of the contraction tree is the time complexity of each node (usually dominated 
by the largest one)

exp(W ) W

1 2 3 4 5

123

4512

12345



Find a contraction tree to minimize the complexity

Greedy algorithms 

Partitioning based algorithms [Gray/Kourtis 2021] 

Simulated-annealing-based algorithm [Kalachev et al 2021]

1 2 3 4 5

123

4512

12345



Slicing

+

=

∑
i

∑
j

∑
k

∑
l

∑
m

AikmBijCjklDlm =
2

∑
k=1

∑
i

∑
j

∑
l

∑
m

AikmBijCjklDlm

k = 1 k = 2

=



The index k is sliced and the contraction of the original tensor network  
becomes summation of  sub-tasks dk

Slicing



big-batch of amplitudes using the big-head algorithm

Head

Tail

F. Pan and PZ, arXiv:2103.03074 (2021) 
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



Correlated bitstrings



A big batch of amplitudes

The whole space, containing  amplitudes253

A sub-space, containing  amplitudes221



# qubits to simulate

Full 
amplitudes 49 qubits

Taihu light 
supercomputer 

[Li et al. IEEE PDS 2019]

Big-batch 
algorithm

50 qubits 100 GPUs

43-qubit Sycamore circuit

Google’s 
paper:

Julich Supercomputer 
100,000 cores 250T meomory

Big-batch 

algorithm
1 GPU

Big-batch  full amplitude simulation⟶

F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



Spoofing the Linear Cross Entropy Benchmark (XEB) 
For supremacy circuits with  
53 qubits and 20 cyclesGoogle量子霸权线路模拟主要结果

arXiv:2103.03074

• 获得了200万末态振幅和概率，其分布服从Porter-Thomas分布
• 从中采样出了100万构型，XEB fidelity为0.739，远高于Google的数据

 exact probabilities  
verifying the Porter-Thomas distribution

221 PU(s)

FXEB

Post-sampling 
Selecting 1 million bitstrings, XEB=0.739

Google量子霸权线路模拟主要结果

arXiv:2103.03074

• 获得了200万末态振幅和概率，其分布服从Porter-Thomas分布
• 从中采样出了100万构型，XEB fidelity为0.739，远高于Google的数据

FXEB = 2n ∑
s∈{1,0}n

q(s)pU(s) − 1

= 2n⟨pU(s)⟩q − 1

≈
2n

m ∑
s∼q

pU(s) − 1

F. Pan and PZ, arXiv:2103.03074 (2021) 
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



Computational cost

Computational 
complexity

Computation 
hardward Time

Google [Arute et. al., 2019]

(Estiamted) ——— Summit Super 
Computer 10,000 Years

IBM [Pednault et. al., 2019] 

(Estimated)
Summit Super 

Computer (all disks) 2.5 days

Alibaba [Huang et. al., 2020] 
(Estimated)

Summit Super 
Computer 20 days

Ours [arXiv:2103.03074] 

(Computed)

Correlated sampling

60 NVIDIA GPUs 5 days4.51 × 1018

1.33 × 1022

1.18 × 1021

F. Pan and PZ, arXiv:2103.03074 (2021) 
F. Pan and PZ, Phys. Rev. Lett. 128, 030501 (2022)



Parallel Computation with GPUs

CPU GPU

• NVIDIA Tesla V100 FP32 performance: 
14.13 TFLOPS 

• NVIDIA Tesla A100 FP32 performance: 
19.5 TFLOPs

• Intel CPUs: 3 GFlops / core , 32 Cores



Implementing the big-batch approach on a super computer 
reduces the computation time from 5 days to 314 seconds



Differences

Big-batch simulation + sampling Sycamore hardware sampling

Correlated samples Uncorrelated samples

Exact sub-space simulation Noisy full-space simulation



Feng Pan, Keyang Chen, PZ ,arXiv:2111.03011

Single-amplitude Sparse state

Left boundary condition:

Product state

Right boundary condition:

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Full-amplitude Big-batch



4 kinds of boundary conditions

Single-amplitude

Batch-amplitude Sparse-state

Full-amplitude



Contractions with the sparse state

• We want only amplitudes for bitstrings {111, 010, 000} 

• Contracting the red part in (a) merges qubits 2 and 3, 
resulting to (b), where only {11,10,00} sub-bitstrings are 
necessary. 

• Contracting the red part in (b) gives the final results 
containing only the required bitstrings.
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Sparse state 
 uncorrelated groups 

each group contains 64 samples
220

Importance sampling

Single TN contraction

 uncorrelated samples 
with fidelity = 1

220

Solving the uncorrelated sampling problem



From group to a representative bitstring

Importance sampling

• Each group contains 64 bitstrings , with 
probability  associated with the sparse state . 

• Loop over  bitstrings from the . At the -th bitstring, 
replace the current bitstring by  with probability 

.

{Si | i = 1,...,64}
{Pi = |ψi |

2 } ψ

64 s1 i
si

min(1, Pi /Pcurrent)

• It’s nothing but Metropolis-Hasting 
• Satisfies Detailed Balance 
•  is large enough for the PT distribution64



1. Using approximate state, e.g. MPS 

2. Sampling from a mixed distribution ( a small portion 
from true distribution + a large part from pure noise) 

• Noisy state:  

• 2000 bit strings with from  and 998000 from 
uniform distribution 

3. Summing over a fraction of paths in the path-integral 
representation.

ρ = f |ψ⟩⟨ψ | + (1 − f )
1
2n

|ψ⟩⟨ψ |

Trading off fidelity for computational complexity



Drilling a hole  breaks 2 qubit lines  inserting 2 error gates 

 

Drilling 4 holes  

⟶ ⟶

E = (1
0) ⊗ (1

0) = (1 0
0 0) =

1
2

I +
1
2

σz

⟶ F ≈ 2−8 = 0.00390625

Trading off fidelity for computational complexity



Head-tail point of view to the hole-drilling



Exploring low-rank structures in the fSim gates

 Keep fidelity

fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

Decrease fidelity  
by a factor of 

(sin2(θ) + 1)/2
21

∏
i=1

[(sin2(θi) + 1)/2] ≈ 0.9565

Festimate = 2−8 × 0.9565 ≈ 0.0037

F. Pan, PZ, arXiv:2103.03074 (2021) , Phys. Rev. Lett. 129, 090502 





Parallel Computation with GPU

CPU GPU



GPU efficiency



GPU efficiency

• NVIDIA Tesla V100 FP32 performance: 14.13 TFLOPS 

• NVIDIA Tesla A100 FP32 performance: 19.5 TFLOPs 

• But with limited Bandwidth: 900GB/s and 1.6TB/s

6 for multiplication + 2 for addition, with Complex64 (FP32 + FP32)



Trade GPU efficiency with FLOPs: Branch Merge

Low time complexity 
Low efficiency

Low time complexity 
Low efficiency

3.87 x Time Complexity  
4.4% 38.4%⟹





Histogram of probabilities

Histogram of approximate  
bitstring probabilities

p(s) = | ̂ψ (s) |2 /𝒩s

Fidelity vs. norm 
in the path integral interpretation



Validation of the approach using smaller Sycamore circuits

Sycamore EFGH circuits with 30 qubits, 14 cycles 
We obtain  bitstring probabilities and  uncorrelated samples, averaged 

over 15 sets of samples.
226 220



Verifications with different sizes

Sycamore EFGH circuits with 14 cycles, and a different number of qubits. 
We obtain  bitstring probabilities and  uncorrelated samples, averaged 

over 15 sets of samples.
226 220



Dependence on the group size

XEB as a function of group size l for Sycamore EFGH circuits with 30 qubits, 14 cycles 
We obtain  bitstring probabilities and  uncorrelated samples, averaged 

over 15 sets of samples.
226 220

Importance 



Verification of the entropy

The exact entropy of the approximate state distribution of compared with the 
entropy estimated using uncorrelated samples generated using the sampling methodt, 
for K cuts in the Sycamore circuits with n = 30 qubits, m = 14 cycles, and EFGH 
sequence. Each data point is averaged over 15 independent sets of samples of size .

|ψK(s) |2

220

220



Computational cost

Computational 
complexity

Computation 
hardward Time

Google [Arute et. al., 2019]

(Estiamted) ——— Summit Super 
Computer 10,000 Years

IBM [Pednault et. al., 2019] 

(Estimated)
Summit Super 

Computer (all disks) 2.5 days

Alibaba [Huang et. al., 2020] 
(Estimated)

Summit Super 
Computer 20 days

Ours [arXiv:2103.03074] 

(Computed)

Correlated sampling

60 NVIDIA GPUs 5 days

Ours [arXiv: 2111.03011]  
(Computed)


Uncorrelated sampling

512 NVIDIA GPUs 15 hours

Exa-Supercomputer

(Estimate) Dozens of seconds

4.51 × 1018

1.33 × 1022

3.49 × 1018

1.18 × 1021

References: 
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