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Quantum Computing (QC)

v Qubits are used by quantum computers to measure 
and extract information 
l Superposition

l Entanglement

v Advantages of QC
l speed up

Google*: 53 qubits /200 s  ~ 253 (1016) dimensions/ 10000 year 

l solve complex problems

l run complex simulations

3

https://www.researchgate.net/publication/344971320

*(Nature volume 574, pages 505–510 (2019))

https://www.nature.com/


Quantum Machine Learning (QML)

v HEP accumulates larger volumes of data, and requires 
higher and higher precision.

l Migrated towards ML in past 20-30 years

l Challenges of ML : heavy CPU time,  global optimization ?  …

v Quantum computer provides a new set of tools for ML

l Serve as a valuable alternative for classical ML models

l Provide more efficient computing devices 

v Potential quantum advantage for ML problems

l Potential speed-up for training [1]

l Data is processed in a high dimensional Hilbert spaces that is 
intractable on classical computers [2]
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CERN Quantum Technology Initiative (CERN QTI)
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Activities in Quantum Computing and Algorithms

v Quantum Algorithms for HEP workloads and QML

v Algorithm Optimization and Benchmarking

v Design of a distributed infrastructure for Quantum Computing
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Quantum Algorithms for HEP workloads and QML

v Quantum Generative Adversarial Networks for detector simulation
l npj Quantum Information volume 5, Article number: 103 (2019)

v Quantum Graph Neural Network algorithm for tracking 
l Quantum Machine Intelligence (2021) 3: 29, https://doi.org/10.1007/s42484-021-00055-9 

v Event Classification with QML in High-Energy Physics 
l Computing and Software for Big Science (2021) 5:2, https://doi.org/10.1007/s41781-020-

00047-7 

v Quantum SVM for Higgs classification
l Phys. Rev. Res. 3 (2021) 3, 033221

v Quantum Machine Learning for b-jet charge identification 
l J. High Energ. Phys. 2022, 14 (2022)

v Quantum Convolutional Neural Networks for Event Classification

v Quantum optimization for grid computing , ……. 8

https://www.nature.com/npjqi


v Calorimeter simulation with Geant4 is the most time-consuming 
part 

v DLGAN gains speed up (up to 160000 x )

v Hybrid quantum-classical GAN (10 x) 

QGAN for Calorimeter  Simulation

9https://ceur-ws.org/Vol-3041/363-368-paper-67.pdf

v Modified a Qiskit qGAN model
l Simplified model :1D 8-pixel images 

l Amplitude encoding: 3 qubits (23 = 8 states) 

https://ceur-ws.org/Vol-3041/363-368-paper-67.pdf


Variational Quantum Classifier for b-jet charge identification 
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J. High Energ. Phys. 2022, 14 (2022)



Variational Quantum Classifier for b-jet charge identification 
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J. High Energ. Phys. 2022, 14 (2022)



Event Classification with Quantum Circuit Learning (QCL) 

v Most frequently used ML technique in HEP data 
analysis is the discrimination of events of interest 
E.g. signal events from background events （SUSY /WW )

12Computing and Software for Big Science (2021) 5:2
https://doi.org/10.1007/s41781-020-00047-7 

v The QCL performance is comparable to BDT and DNN
l 3 variables is enough to discriminate signal from background

l the performance of the BDT and DNN improve rapidly with number of events



Employing QSVM-Kernel for ttH (H-> 𝞬𝞬) analysis at ATLAS
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Our Program with Quantum Machine Learning 

v Started in Nov. 2020

v Manpower
l SDU：Teng Li, Zhipeng Yao, Xingtao Huang

l IHEP：Jiaheng Zou, Tao Lin, Weidong Li 

v QML application in PID, tracking and Analysis
l Variational Quantum Classifier Method

l Quantum Support Vector Machine Kernel Method 

l Quantum Neural Network Method 

v Study quantum computing as a proof of concept
l Test Under Noisy Intermediate-Scale Quantum (NISQ) device

l Explore and demonstrate of the potential of quantum computer in HEP 
experiments [3-5]

l Pave the way for future applications (e.g. analysis, tracking,  ... ) 14



Particle Identification at BESIII

v PID performance is critical for various physics studies at BESIII
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Particle Identification with ML

v Machine learning has armed PID with a powerful toolbox

l Frequently used models include SVM, DNN, CNN, BDT and MLP etc.

l Good at combining information of multiple sub-detectors, especially for hard 
PID tasks (such as, μ/π separation in this study)

μ μ

π π

• XGBoost

• Selected 47 
out of 108 
features 
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Method I
Quantum Support Vector Machine



Classical Support Vector Machine

v Support Vector Machine (large margin classifier) 

v The heavy part of training SVM is the computation of the kernel 
matrix

v Quantum device provides an extension of the kernel methods
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Quantum Support Vector Machine

v The inner product of two quantum states representing two data 
points can be seen as the kernel [6]

v The quantum circuits can estimate the kernel values:
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Quantum Feature Map

v The core part of QSVM is the encoding circuit (feature map) [7]

v The feature map encodes data points into the amplitude of 
quantum states based on Pauli rotation operators
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Training Sample and Baseline Models

v BESIII MC Sample:
l Single μ± and π± tracks from MC, 20000 training tracks and 10000 

test tracks per dataset

l Cross validation on 20 datasets 

l Nine selected features:
n Reconstructed momentum and direction ( 𝑝, 𝜃)
n PID likelihood from TOF and dE/dX (𝜒._0123 , 𝜒4_0123 , 𝜒._56573 , 𝜒4_56573 )

n Shower shape in EMC( 8!×!
8#$$%

, 8&×&
8!×!

)

n Penetration depth in MUC (depth)

v Baseline models are carefully tuned as control group
l Classical SVM: scikit-learn 0.24.1

l BDT: py-xgboost 0.90

l MLP: tensorflow 2.4.1
21



v Various types of encoding circuits are simulated using 
qiskit
l A few simple circuits show comparable performance

l Complicated circuits are prone to overfitting

Scan of Various Encoding Circuits
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Influence of the Regularization Parameter
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v The influence of the SVM regularization parameter can be carefully 
tuned to handle the overfitting/underfitting trade-off



Influence of the training size
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A
U

C

100   200     500    1k     2k        5k    10k    20k
size of training set

v Different size of the training set are tested
l The quantum SVM usually shows unstable performance when the 

training size is small

l Some circuits start to overtake Gaussian kernel with larger training sets

100   200     500    1k     2k        5k    10k    20k
size of training set



Comparison with Traditional Models
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v The discrimination power is compared with the baseline 
models
l After the fine tuning of hyper-parameters

l Similar discrimination power can be achieved



Run on the Quantum Hardware

v It's interesting to see how the noise 
from real hardware affects the 
performance

v The OriginQ Wuyuan system based 
at Hefei, China [8]

l Based on super-conducting technology

l 6 qubits, controlled by QPanda API

v Procedure of running QSVM model
l Design quantum circuits

l Generate Qpanda code

l Submit jobs to calculate the
Kernel Matrix

l Train and evaluate the models
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Compressed Feature Map on Quantum Hardware

v Two feature maps are re-designed to meet the limited number 
of qubits on the Wuyuan system
l Two features are encoded into each qubit, based on the RX and RZ

rotations

l The feature map structure is carefully tuned for the best simulation 
results
n AUC (1): 0.90373±0.0024
n AUC (2): 0.91029±0.0023
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v The quantum circuits are generated based on the dataset, then 
uploaded to the Wuyuan system via QPanda

l Quantum circuits are automatically optimized against the Wuyuan system

l Results are transferred back to the classical computer for downstream 
computations

Job Execution on the Wuyuan System

28

An example circuit being executed on Wuyuan

Results of one execution



Results from the Hardware
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v Results from Origin Wuyuan
l Results obtained from 100 training tracks and 100 test tracks, averaged 

from three runs

l The noise compromises the performance, but at a controllable level



Method II
Variational Quantum Classifier



Variational Quantum Classifier: Introduction

v Variational Quantum Classifier as a hybrid model

l A subsequent variational (train-able) circuit performs a linear 
transformation on the prepared state

l The parameters of the variational circuit can be trained based on 
the gradients calculated classically

l Data is classified by measuring the output qubit(s). (estimating the 
probabilities of each state)
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Optimization of VQC

v As a 'quantum neural network', the key issue is to optimize the 
free parameters of the variational circuits
l Traditional backward propagation is inpractical due to the limits of 

quantum theory

l The numerical differentiation method was usually used previously 
to calculate the gradients

l Currently, the gradient is more popularly computed based on the 
parameter shift rule [9]

32

the error term



Search of Optimal Encoding Circuits

v A wide range of encoding circuits is simulated as well
l Relatively simpler (X_3, Z_2) circuits provide better 

discrimination power. This is simillar with results from qSVM

l Overfitting is less obvious comparing to qSVM
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Search of Optimal Variational Circuits
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v A set of pre-studied N-Local ansatz are scanned based on the optimal 
encoding circuits
l EfficientSU2: ansatz with single qubit spanned by SU(2) and CX 

l PauliTwoDesign: ansatz with single qubit Pauli rotations and pairwise CZ entanglements

l RealAmplitudes: ansatz with single qubit Y rotations and pairwise CX entanglements

l TwoLocal: ansatz with flexible rotation layers and entanglement layers

l ExcitationPreserving: heuristic excitation-preserving wave function ansatz

v For X_3 and Z_2, the best variational circuits are EfficientSU2 and 
RealAmplitudes, respectively



Search of Optimal Variational Cirtcuits
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v Performance of different ansatz structures
l Different entanglement methods and ansatz depth are simulated to study 

the impact on the performance

l In general, the full entanglement method, and deeper ansatz (with more 
trainable parameters) always gives better discrimination power, but also 
consumes much more computing resource

A
U

C

repetition of variational circuit repetition of variational circuit

EfficientSU2 with X_3 RealAmplitudes with Z_2



Optimization of VQC

v Common gradient descent method and Quasi-Newton 
method are compared
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(a)(c) Variation of AUC with the number of iterations 
(b)(d) Variation in the objective function during the iteration.

l Since L_BFGS_B (Quasi-Newton 

method) invokes the second 

derivative of the loss function, 

the convergence can be achieved 

much faster



Comparison with Classic MLP
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v The optimal VQC is compared with the classical MLP neural 
network
l VQC config: EfficientSU2 with X_3 and L_BFGS_B optimizer

l MLP config: 400x200x100x50x15 (relu, adam)

l On small samples, VQC performs similarly to the classical MLP 
neural network



Summary (1)

v Quantum Computing has made rapid progress and has the 
potential to revolutionise science and society in the next five to 
ten years. 

v Quantum machine learning could possibly become a valuable 
alternative to classical machine learning for HEP data 
processing and physics analysis

v An International Collaboration (CERN QTI) serves as an 
international and open platform to build collaborations and 
define the roadmap and research programme

v Several HEP groups have been formed to push the application 
of QML in China, but we need more efforts, more collaborations 
and more …
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Summary (2)

v Targeting at the BESIII μ/π identification problem, we studied the 
qSVM and VQC algorithms as a proof of concept

l A wide range of encoding methods are evaluated
n A few ones show comparable performance with classical models 
n Others show potential to classify much more complicated data

l Efforts are made to run the qSVM model on the Wuyuan system

l Different optimization method and variation ansatzs are studied for 
the VQC

n The design of ansatzs heavily depends on the specific problem
n Automated way to find optimal ansatzs is desired

v The QML models show quite comparable performance comparing 
to their classical counterparts, showing potential to apply QML on 
HEP experiments

39Thanks for your attention!
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QML Tutorial

Teng Li



Tutorial: Setup Qiskit

v Qiskit is an open-source SDK for working with 
quantum computers at the level of pulses, circuits, 
and application modules.

v qSVM is builtin within Qiskit

v Setup Qiskit via Anaconda and pip

$ conda create -n qml python=3
$ conda activate qml
$ pip install 'qiskit[visualization]'
$ pip install qiskit_machine_learning
$ pip install qiskit-aer-gpu

42



Build qSVM from scratch



Tutorial: Building qSVM from scratch

v Build and visualize a encoding circuit via 
QuantumCircuit

You can also use an online editor to design your circuit, then 
implement it in python
https://qcloud.originqc.com.cn/quantumVm/5/0

Draw the circuit to visualize and validate it.
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Tutorial: Building qSVM from scratch

v Build a quantum kernel generator using this feature 
map 

The 
q_kernel.evaluate 
will calculate the 
kernel based on the 
input data

QuantumKernel will 
build circuit based 
on your feature 
map.
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Tutorial: Building qSVM from scratch

v Train and evaluate SVM with the quantum kernel 

Just use sklearn.SVC to create 
a SVM model, with a self-
defined kernel
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Tutorial: Building qSVM from scratch

v Use built-in feature maps in Qiskit

Checkout the built-in feature maps in Qiskit: 
https://qiskit.org/documentation/apidoc/circuit_library.html#data-encoding-circuits
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Build VQC from scratch



Introduction

v Besides the feature map, VQC uses an additional 
variational circuit to transform the input state

v The variational circuit is trainable via gradient descent
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Tutorial: Building VQC from scratch

v Create the ansatz of the variational circuit

Checkout the built-in ansatz in Qiskit: 
https://qiskit.org/documentation/apidoc/circuit_library.html#n-local-circuits

Like the feature map, you can 
also use the built-in, or self-
defined ansatz structure.

Then visualize the structure of 
the ansatz.
(θ[n] is the trainable parameters)
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Tutorial: Building VQC from scratch

v Built VQC based on a feature map and a variational 
circuit
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Tutorial: Building VQC from scratch

v The key issue for VQC is the optimization problem

v There are a lot of built-in optimizers in Qiskit:
l https://qiskit.org/documentation/stubs/qiskit.algorithms.opti

mizers.html

v You could also develop your own optimizer if you are 
familiar with quantum algorithms
l Check https://pennylane.ai/qml/demos_optimization.html for 

more technical details

52



Welcome to collaborate together on developing
Quantum Algorithms and their applications in HEP
data processing and analysis.
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