Quantum computing for nuclear matter at finite temperature

Dan-Bo Zhang

South China Normal University

Guangzhou | Nov-25

Collaborator: Tianyin Li, Xudan Xie, Xingyu Guo, Wai Kin Lai, Xiaohui Liu, Enke Wang, Hongxi Xing, Dan-Bo Zhang, Shi-Liang Zhu

量子计算与高能核物理交叉前沿讲习班

- nuclear matter as quantum many-body system
- quantum algorithm for finite-temperature systems
- demo: 1+1D Schwinger model
- discussion: phase diagram, non-abelian...

Confinement and QCD

Deconfinement

 Early stage of universe (can quantum computer simulate the evolution of universe?)

Nuclear collisions

QCD phase diagram

Quantum many-body System of quarks and gluons.

Sign problem at finitetemperature & finitedensity See 丁亨通

Parton picture for a hadron

(二)长尾科技

Quark model,

By Gell-Mann 1964

 $v \rightarrow c$

Close to light speed

"Very High-Energy Collisions of Hadrons" Parton model, By Feynman, **1969**

Quantum many-body system

See 周剑

How to "see" parton

• Experiment: Deep inelastic scattering

• Dynamical correlator (light-cone):

$$f_{q/h}(x) = \int \frac{dz}{4\pi} e^{-ixM_h z}$$

$$\times \langle h | e^{iHt} \overline{\psi}(0, -z) e^{-iHt} \gamma^+ \psi(0, 0) | h \rangle$$
Many-body state of a proton is complicated!

Feynman: a controllable quantum system can simulate other quantum systems

• renormalizaiton?

seems too hard on near-term quantum computers

Nuclear matter in the eye of an artist

毕加索眼里的牛

QCD at current stage is too hard

losing details but not the key features

Starting with some "toy models", play with quantum computers

QuNu Collaboration @ SCNU

1. Hadron structure, simulated with 1+1D NJL model (no gauge field, only contact interaction)

- Parton distribution function <u>TYL, XYG, WKL, XHL, EKW, HX, DBZ, SLZ</u> <u>PhysRevD.105.L111502</u>(2022)
- Light-Cone Distribution Amplitudes <u>TYL, XYG, WKL, XHL, EKW, HX, DBZ, SLZ</u> <u>arXiv:2207.13258</u> (2022)

2. Deconfinement at high temperature, simulated with 1+1D Schwinger model XDX, XYG, HX,ZYX, DBZ, SLZ

<u>PhysRevD.106.054509</u>(2022)

- nuclear matter as quantum many-body system
- quantum algorithm for finite-temperature systems
- demo: 1+1D Schwinger model
- discussion: phase diagram, non-abelian...

Simulation of finite-temperature quantum systems

• Important as the nature lives at finite-T

$$\begin{split} \rho(\beta) &= e^{-\beta H}/Z(\beta) & \text{Mixed state:} \\ Z(\beta) &= \text{Tr} e^{-\beta H} \ T &= 1/\beta & \text{eigenstates of H} \end{split}$$

Nielson & chuang's textbook (2002)

should be weak. Obtaining ρ_{therm} for arbitrary H and T is generally an exponentially difficult problem for a classical computer. Might a quantum computer be able to solve this efficiently? We do not yet know.

- Quantum simulation / algorithm
 - imaginary time evolution
 - variational method by minimizing free energy

J. Wu & T. H. Hsieh, PRL, 2019 Liu, Mao, Zhang & Wang, 2021 Poulin & Wocjan, PRL, 2009 Mario Motta, etc., Nat. Phys. 2019 Dan-Bo Zhang, etc., PRL, 2021

Mixed state on a quantum computer?

- U|0>: quantum computer naturally for pure states!
 - mixed states in real quantum computers due to noises? Not controllable
- Mixed state from a trace of pure state

$$ho = {
m Tr}_B \ket{\psi}ig<\psi
vert$$
 a b

Schmidt decomposition $\ket{\psi} = \sum_i \sqrt{\lambda_i} \ket{\psi_i^A} \otimes \ket{\psi_i^B} \quad \rho = \sum_i \lambda_i \ket{\psi_i^A} ig \psi_i^A$

• Mixed state as a classical distribution of pure state

$$ho = \sum_i \lambda_i \ket{\psi_i^A} ig< \psi_i^A ig|$$
 With a prob λ_i , generate a state $\ket{\psi_i^A}$

Complexity of Gibbs state

- low-temperature limit: large weighting on low-lying eigenstates
- high-temperature limit: almost equal-weighting
- infinite temperature: completely mixed state: the easiest one!

$$I_{2^n}/2^n = 1/2^n \sum_i |\varphi_i\rangle < \varphi_i| = \frac{I_2}{2} \otimes \frac{I_2}{2} \otimes \dots = \frac{I_2}{2}$$

Just product of one-qubit completely mixed state

• Locality of temperature Phys. Rev. X **4**, 031019(2014) Phys. Rev. X **11** 011047 (2021)

define temperature at length scale

 $\mathcal{O}(\beta^{2/3})$

- Infinite-T, totally local
- High-T, easy problem. Many methods work

Gibbs states: imaginary time evolution

• Thermofield double (TFD) state (purification of Gibbs state)

$$|\psi(\beta)\rangle = \sum_{n} \frac{e^{-\beta E_{n}/2}}{\sqrt{\mathcal{Z}(\beta)}} |u_{n}^{*}\rangle_{A} \otimes |u_{n}\rangle_{B} \qquad \rho(\beta) = \operatorname{Tr}_{A} |\psi(\beta)\rangle \langle\psi(\beta)|$$
$$|\psi(\beta)\rangle = \sqrt{\mathcal{C}I} \otimes \frac{e^{-\beta H/2}}{|\psi(0)\rangle} |\psi(0)\rangle \qquad |\psi(0)\rangle = (1/\sqrt{D}) \sum_{n} |n\rangle_{A} \otimes |n\rangle_{B}$$

- Implement imaginary time evolution (non-unitary operator) on quantum computer $|\psi(0)\rangle$
 - find an (approximately) equal unitary operator
 - unitary evolution + projection

Quantum imaginary time evolution

• Trotter decomposition $\hat{H} = \sum_{m} \hat{h}[m]$

$$\mathbf{e}^{-\beta\hat{H}} = (\mathbf{e}^{-\Delta\tau\,\hat{h}[1]}\mathbf{e}^{-\Delta\tau\,\hat{h}[2]}\dots)^n + \mathcal{O}(\Delta\tau); \ n = \frac{\beta}{\Delta\tau}$$

For each small imaginary-time evolution, find an unitary operation

$$|\bar{\Psi}'\rangle \equiv c^{-1/2} e^{-\Delta\tau \hat{h}[l]} |\Psi\rangle = e^{-i\Delta\tau \hat{A}[l]} |\Psi\rangle \qquad \hat{A}[l] = \sum_{I} a[l]_{I} \hat{\sigma}_{I}$$

Solve linear problem on classical Computer

 $(\mathbf{S} + \mathbf{S}^T) \mathbf{a}[l] = -\mathbf{b}$

Measure on quantum computer $S_{IJ} = \langle \Psi | \hat{\sigma}_I^{\dagger} \hat{\sigma}_J | \Psi \rangle ,$ $b_I = i \langle \Psi | \hat{\sigma}_I^{\dagger} | \Delta_0 \rangle - i \langle \Delta_0 | \hat{\sigma}_I | \Psi \rangle$

Mario Motta, etc., Nat. Phys. 2019

 $|\psi(\beta)\rangle$

Also see 袁骁: variational imaginary time evolution

Few-qubit imaginary time evolution may corresponds to multi-qubit real-time evolution

Linear-combination-of-unitaries(LCU)

• An nonunitary operator can be expressed as a linear combination of unitaries, with $\log_2 d$ auxiliary qubits

Imaginary time evolution, by Fourier transformation

$$e^{-\beta h/2} = \int_{-\infty}^{\infty} dp R(\beta, p) e^{-ihp}, \qquad R(\beta, p) = \frac{2}{\pi} \frac{\beta}{\beta^2 + 4p^2}$$

Also see 袁骁: universal cooling (hybrid quantum-classical)

Gui-Lu Long, 2002

A. M. Childs etc.,

1920 (2017)

Siam. J. Comput. 46,

- Discretization of integral?
- Integral of unitaries with an auxillary continuous-variable(qumode)!

Qubits and Qumodes

• Qubit (discrete variable) : superposition of |0> and |1>

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

• Qumode (continuous variable) : "position" $|p\rangle$, "momentum" $|q\rangle$

$$\begin{bmatrix} \hat{q}, \hat{p} \end{bmatrix} = i\hbar \\ |p\rangle = \int dq e^{ipq} |q\rangle \quad |\psi\rangle = \int dq \psi(q) |q\rangle = \int dp \psi(p) |p\rangle$$

Undergrad math for a simple quantum algorithm

Continuous-Variable Assisted Thermal Quantum Simulation

Dan-Bo Zhang, etc., PRL,127, 020502 (2021)

$$e^{-\beta h/2} = \int_{-\infty}^{\infty} dp R(\beta, p) e^{-ihp}, \qquad R(\beta, p) = \frac{2}{\pi} \frac{\beta}{\beta^2 + 4p^2}$$

$$e^{-\beta H/2} = \int_{-\infty}^{\infty} dp R(\beta, p) e^{-iHp} \propto \langle 0_q | e^{-iH\hat{p}} | R(\beta) \rangle \qquad |R(\beta)\rangle = \sqrt{\beta\pi} \int_{-\infty}^{\infty} dp R(\beta, p) | p \rangle_p$$

$$|R(\beta)\rangle = \frac{q=0}{e^{-iH\hat{p}}}$$

$$I/d = \rho(\beta)$$

Can resource state R efficiently prepared?

Yes, rapid progress on bosonic code How to implement The projection can be made the evolution? only with finite squeezing!

 $|0\rangle_q$

 $s = O(e^{-\frac{1}{2}})$

 $|0,s\rangle$

Yes. Efficient with Trotterizaton

Test: simulate quantum critical regime

• quantum phase transition occurs at T=0,

but the quantum critical point affects physics at finite T, e.g., high-Tc superconductor

- quantum critical region: interplay between quantum and thermal fluctuations
- a testbed for quantum simulation

Analog of QCD phase diagram?

• p-wave superconductor on a ring
$$H_K = -J \sum_{i=1}^{L} (c_i^{\dagger} c_{i+1} + c_i^{\dagger} c_{i+1}^{\dagger} + \text{H.c.}) - \mu \sum_{i=1}^{L} c_i^{\dagger} c_i$$

Gibbs states: variational principle

• Zero temperature: ground state by minimizing the energy

$$\min_{\vec{\theta}} E\!\left(\vec{\theta}\right) \geqslant E_{gs}$$

• Finite temperature: minimizing free energy

$$Min_{\theta} F(\theta) := E(\theta) - TS(\theta) \ge F_0$$

Role of entropy: distribution!

Q: how to evaluate S? $S = -\operatorname{Tr} \rho \log \rho$ Not like a Hermitian operator

Measurement of entropy

• Measurement of observables $\mathbf{M} = \sum_{i=1}^{n}$

$$\mathbf{M} = \sum_{i} C_{i} \mathbf{P}_{i} \qquad \langle \mathbf{M} \rangle = \sum_{i} C_{i} \langle \mathbf{P}_{i} \rangle$$

 Entropy is a function of state itself: statistics of the spectrum of density matrix

• Von-Neumann entropy
$$S = -\operatorname{Tr} \rho \log \rho = -\sum_{i} \lambda_i \log \lambda_i$$

- Rényi entropy
 - $S_n = \frac{1}{1-n} \log \operatorname{Tr} \rho^n$
n=2, purity!
- General Swap test with n copies
- Random measurements with t-design (t=n)

Von-Neumann entropy is still hard to measure

Variational preparing TFD state

$$|\varphi(\alpha,\gamma)\rangle_p = \prod_i^p e^{i\alpha_i H_{AB}} e^{i\gamma_i (H_A + H_B)/2} |TFD(0)\rangle$$

Jingxiang Wu and Timothy H. Hsieh, PRL 123, 220502 (2019)

Minimizing the infidelity: (how to do the overlap? Moreover, global type cost, see 邓东灵)

 $F_p(\vec{\alpha}, \vec{\gamma}) = 1 - |\langle \text{TFD}(\beta) | \psi(\vec{\alpha}, \vec{\gamma}) \rangle_p |^2$

Minimizing the free energy (how to measure entropy?): $F_A = E_A - TS_A$

Gibbs state as classical distribution of eigenstates

 $ho = \sum_i p_i \ket{\psi_i}ig<\psi_i$

Jin-Guo Liu & Lei Wang, arXiv:1912.11381

Cooperation between classical neural network and variational quantum circuit!

- nuclear matter as quantum many-body system
- quantum algorithm for finite-temperature systems
- demo: 1+1D Schwinger model
- discussion: phase diagram, non-abelian...

Model: 1+1D Schwinger model

• 1+1D quantum electrodynamics (U(1) gauge field)

$$\mathcal{L} = \bar{\psi} \left(\gamma^{\mu} (i\partial_{\mu} + gA_{\mu}) - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

Electric flux

- 麻雀虽小, 五脏俱全。 Confinement, dynamical generated mass(gapped at m=0), chiral symmetry breaking...
- familiar to quantum computing community as easy to simulate. (Also see 翟荟, which is a Z₂ Schwinger Model)
- Deconfinement at infinite temperature PRD 19.1188(1979)

Lattice Hamiltonian + Gauss law

U(1) gauge theory

• lattice Hamiltonian

$$H = \frac{1}{2a} \sum_{j=1}^{N-1} [\hat{\Phi}_{j}^{\dagger} \hat{U}_{j,j+1} \hat{\Phi}_{j+1} + h.c.] \qquad \hat{U}_{j,j+1} = e^{i\theta_{j,j+1}}$$
$$(\theta_{j,j+1}, L_{j',j'+1}] = -i\delta_{j,j}$$
$$+m \sum_{j=1}^{N} (-1)^{j} \hat{\Phi}_{j}^{\dagger} \hat{\Phi}_{j} + \frac{g^{2}a}{2} \sum_{j=1}^{N-1} \hat{L}_{j,j+1}^{2} \qquad \hat{U}|l\rangle = |l+1\rangle$$

• Gauss law: physical Hilbert space with local constraints

Staggerodd even
$$\hat{L}_{j,j+1} - \hat{L}_{j-1,j} = \hat{\Phi}_{j}^{\dagger} \hat{\Phi} - \frac{1 - (-1)^{j}}{2}$$
fermion \bigcirc \bigcirc Odd:0 (e⁻), 1 (empty) \bigcirc even:1 (e⁺), 0 (empty) \bigcirc

• Open boundary

$$\hat{L}_{j,j+1} = \varepsilon + \sum_{l=1}^{j} \left[\hat{\Phi}_{j}^{\dagger} \hat{\Phi}_{j} - \frac{1 - (-1)^{l}}{2} \right]$$

Background field
with a pair of charges
$$\mathcal{E}$$

- and with $\hat{\Phi}_j \rightarrow \prod_{l=1}^{j-1} \hat{U}_{j,j+1} \hat{\Phi}_j$
- Hamiltonian with only fermions

• Jordan-Wigner transformation $\hat{\Phi}_j = \prod_{l=1}^{j-1} (i\sigma_l^z)\sigma_j^-$

Long range interaction

Tensor network approach

Hamiltonian simulation of the Schwinger model at finite temperature

Boye Buyens, Frank Verstraete, and Karel Van Acoleyen Phys. Rev. D **94**, 085018 – Published 21 October 2016

• Matrix Product Operators to represent Gibbs states

- Works for infinite long chain with iTEBD. Free of sign problem.
- Gauge invariant enforced by projector P (Gauss law)

$$\langle Q \rangle_{\beta} = \frac{\operatorname{tr}(\underline{P}QPe^{-\beta H})}{Z(\beta)} \text{ with } Z(\beta) = \operatorname{tr}(Pe^{-\beta H})$$

String tension: indicator of confinement/deconfinement

 String tension as the difference of free energies with/without a pair of charges at boundaries

$$\sigma_{\varepsilon}(\beta) = \frac{1}{Nga} \left(F_{\varepsilon}(\beta) - F_0(\beta) - f_{\varepsilon} \right)$$

- Zero T. A linear potential between two charges(qqbar)
- Increasing T: the string is weaken by thermal fluctuations of qqbar.

First try with quantum algorithm

- Get free energy is necessary
- Method: variational quantum algorithm for evaluating the free energy

Product spectrum ansatz

$$\rho(\boldsymbol{\omega}) = U(\phi)\rho_0(\theta)U^{\dagger}(\phi)$$

Entropy not change with U

Classical computer

• Minimize free energy: $F(\beta) = E(\beta) - TS(\beta)$

Quantum computer

Illustration of the algorithm

Hybrid quantum-classical optimization

How about finite-density?

• For Monte Carlo, finite-density leads to sign problem

 Quantum computing puts finite-density and zero-density on the same footing by involving chemical potential

$$H_{\varepsilon} \implies G_{\varepsilon}(\mu) = H_{\varepsilon} - \frac{\mu}{2} \sum_{j=1}^{N} \hat{\sigma}_{j}^{z}$$

Results: accuracy vs circuit depth

String tension at finite-T finite-density

- nuclear matter as quantum many-body system
- quantum algorithm for finite-temperature systems
- demo: 1+1D Schwinger model
- discussion: phase diagram, non-abelian...

Phase diagram of QCD

Textbook of statistical physics: if we can calculate free energy, then we can get everything

- Equation of state
- Critical point
- • •

Q1: Can we efficiently and accurately calculate free energy on a quantum computer?

Q2: Can we really simulate QCD on a quantum computer?

Q1: quantum simulation of finite-T system

efficiently and accurately calculate free energy?

n may be not sufficient

- hard to optimize (Lei Wang)
- analog quantum simulator? but how to control temperature?

How many parameters to determine the classical distribution?

Q2: simulate QCD

- 1+1D, no problem for even SU(2), SU(3), as gauge field can be eliminated by Gauss law.
- d+1D, even U(1) demands lots of quantum resource. $_{x,2}$

digitalization of gauge field (see NuQS Collaboration)

SO(3) \rightarrow Uniform covering?

N is limited

Conclusion

- Simulate finite-temperature and finite-density systems with quantum computer. In principle, no problem.
- Simulate QCD phase diagram? Great challenge at mapping the lattice model on a quantum computer.