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For inclusive observables, sensitive only to a single high-energy scale 
Q, we have

3

power corrections

nonperturbative

partonic cross 
sections: 

perturbation theory

parton distribution 
functions (PDFs): 

nonperturbative

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µf )〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

Collinear factorization for inclusive observables



The right way to look at this formula is effective theory
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RG
-e
vo

lu
tio

n

low-energy matrix 
elements


nonperturbative

Wilson coefficient: 
matching at μ ≈ Q 

perturbation theory

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

power 
suppressed

operators



The matching coefficient         is independent of 
external states and insensitive to physics below the 
matching scale μ. 


Can use quark and gluon states to perform the 
matching.


• Trivial matrix elements


• Wilson coefficients are partonic cross section


• Bare Wilson coefficients have divergencies. 
Renormalization induces dependence on μ. 
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σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Cab



Quite nontrivial that the low-energy matrix element factorizes 
into a product


 


One should be worried about long-distance interactions 
mediated by soft gluons
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σ =
∑
a,b

∫ 1

0

dx1dx2 σ̂ab(Q, x1, x2, µf ) fa(x1, µf) fb(x2, µf ) +O(ΛQCD/Q) (1)

σ =
∑
a,b

∫ 1

0

dx1dx2 Cab(Q, x1, x2, µ)〈P (p1)|Oa(x1)|P (p1)〉 〈P (p2)|Ob(x2)|P (p2)〉+O(ΛQCD/Q)

(2)

〈qa′(x′p)|Oa(x)|qa′(x′ p)〉 = δaa′ δ(x′ − x)

Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)

Glauber gluon 

standard soft gluon

pµ ⇡ pµ?



All proton collisions include forward component (proton remnants)


Absence of factorization-violation due to Glauber gluons is important element 
of factorization proof for Drell-Yan process. 

7

All proton collisions include forward component (proton 
remnants). EFT for pp collisions must describe forward 
scattering. 

• EFT should include Glauber-gluons. 

• Absence of factorization-violation due to 
Glauber gluons is important element of 
factorization proof for Drell-Yan process.
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Glauber Exchange 
violates factorization: 122
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FIG. 29. Spectator-specator interactions for the hard scattering correlator in Eq. (312). The Glauber

interaction labeled G indicates the sum of all ladder diagrams including the graph with 0 Glaubers as

indicated.

As we will see below once the hard scattering is taken into account the Glaubers no longer

eikonalize. However, despite this fact, an overall phase will still be generated if we sum over

Glauber exchange rungs (ignoring soft and collinear radiation).

We will also show under what circumstances the phase cancels. Of course this cancellation

is a necessary TODO:

Check

(TODO) but not su�cient condition for a proof of factorization. Since there are

quantum corrections which break factorization that are not pure phases. A demonstration of how

complete proofs of factorization can be carried out using our Glauber theory will be given elsewhere.

TODO:

FIX THIS

OUTLINE

(TODO) In Sec. VIIB we consider the same all order resummation of Glauber exchanges for

a hard scattering vertex, demonstrating that they again give a phase. In Sec. VIIA we consider

Glauber gluons in diagrams involving spectators that do not directly participate in the hard scat-

tering.

A. Spectator-Spectator

We begin by considering the diagrams in Fig. 29 which we refer to as Spectator-Spectator (SS)

interactions. These occur between spectator particles which do not participate in the hard annihi-

lation. Since the hard scattering case with M
DIS
� has only a single hadron, these SS contributions

only exist for the hard annihilation case with M
DY
� , where the two participating spectators are

created by �n and �n̄ respectively. In these graphs the hard interaction is indicated by the ⌦, and

our routing for incoming and outgoing external momentum is shown in Fig. 29b. For simplicity

we take the limit where the mass of the incoming hadrons is ignored, so that P 2 = P̄ 2 = 0. This

is accomplished by taking Pµ = n̄ · P nµ/2 and P̄ = n · P̄ n̄µ/2 respectively. The tree level result

for Fig. 29b is then given by

Fig. 29b = S
�
i n̄ · (p1�P )

(P � p1)2
i n · (P̄ � p2)

(P̄ � p2)2
(313)

= S
�


1

~p 2
1?

1

~p 2
2?

� 
n̄ · p1 n̄ · (P�p1)

n̄ · P

n · p2 n · (P̄�p2)

n · P̄

�

⌘ S� E(p1?, p2?),

couples n-collinear,
n-collinear, and 

soft modes

Glauber’s dominate 
Forward Scattering:
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FIG. 4. Tree level matching for the nnn̄n̄ Glauber operators. In a) we show the four full QCD graphs

with t-channel singularites. The matching results are given by reading down each column. In b) we show

the corresponding Glauber operators for the four operators in SCET with two equivalent notations. The

notation with the dotted line in c) emphasizes the factorized nature of the n and n̄ sectors in the SCET

Glauber operators, which have a 1/P2
? between them denoted by the dashed line.

Thus for these tree level 2–2 scattering graphs the Mandelstam invariant t = q2
?
= �~q 2

?
< 0.

For this matching calculation there are four relevant QCD tree graphs, shown in Fig. 4a. They

will result in four di↵erent Glauber operators, whose Feynman diagrams for this matching are

represented by Fig. 4c. The matching must be carried out using S-matrix elements for a physical

scattering process, so we take ?-polarization for the external gluon fields. Expanding in � the

results for the top row of diagrams at leading order is

i
h
ūn

n̄/

2
TBun

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
v̄n̄

n/

2
TCvn̄

i
, (28)

i
h
ifBA3A2gµ2µ3

?
n̄ · p2

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
v̄n̄

n/

2
TCvn̄

i
,

i
h
ūn

n̄/

2
TBun

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
ifCA4A1gµ1µ4

?
n · p1

i
,

i
h
ifBA3A2gµ2µ3

?
n̄ · p2

ih
�8⇡↵s(µ)�BC

~q 2
?

ih
ifCA4A1gµ1µ4

?
n · p1

i
.

In writting these results we have written out the collinear quark spinors but left o↵ the collinear

gluon polarization vectors "µ2A2
n (p2) etc, for simplicity.

We begin our analysis by discussing the SCETII operators whose tree level matrix elements

reproduce the results in Eq. (28). The four SCETII operators whose matrix elements reproduce

Eq. (28) factorize into collinear and soft operators separated by 1/P2
?

factors, so we adopt the

n n

ss

fwd. scattering

fwd. scattering

n-n̄

n-s

(small-x logs,  reggeization, BFKL,
BK/BJMWLK, …)

Glauber

Bodwin ’85; Collins, Soper, Sterman ’85 ’88 …

[15] to discuss scattering at high energy and small angles.
The eikonalization indicates that substantial simplifica-
tions are possible. But that situation would go well beyond
normal factorization.

V. DISCUSSION

We should first emphasize that there is a large overlap
between the present paper and the work in Refs. [1– 4].
What is not so clear from the earlier work is whether
factorization in any standard sense continues to hold in
the process (1.1). For example, in [1], we read ‘‘We have
assumed factorization to hold in this treatment of TMD
effects although it is, at the present, certainly not clear
whether such a factorization holds for hadron-hadron scat-
tering processes with explicitly TMD correlators.’’

Our primary result is to show by a counterexample that
hard-scattering kT factorization with universal parton den-
sities fails for the production of high pT hadrons in hadron-
hadron collisions, when a pair of measured hadrons is close
to back-to-back azimuthally. The overall issue is that in a
gauge theory arbitrary exchanges of gauge fields between
different collinear groups (‘‘jets’’) can occur without any
power suppression. To obtain factorization it is necessary
to show that the sum over these exchanges can be absorbed
into the definitions of the parton densities and fragmenta-
tion functions, assisted by certain cancellations. A full
proof will be quite general, applying to a general gauge
theory and to many reactions. So one particular counter-
example is sufficient to show that such a proof does not
exist; we can then choose the counterexample for maxi-
mum clarity and simplicity.

Even for those cases where factorization does hold, the
need to make suitable definitions of the parton densities,
etc., so as to absorb the effects of the gluon exchanges
indicates that the parton densities, etc., can always be
regarded as effective densities [16]. The primary practical
issue is whether they are universal, i.e., the same for all
reactions. In a certain sense, the well-known scale depen-
dence of the densities is a kind of nonuniversality: different
parton densities are needed when the scale of the hard
scattering is given a large increment. But there is an
evolution equation for the scale dependence, and this ap-
plies to an individual parton density. No details or specifi-
cation of the hard scattering is needed to treat the evolution
equation, either to derive it or to apply it. We should
therefore refer in this case to ‘‘modified universality,’’ not
to nonuniversality. Similarly the reversal of the sign of the
Sivers function between SIDIS and DY processes is a case
of modified universality.

At the upper end of the exchanged gluon in our counter-
example, the interactions can be treated in the eikonal
approximation. This is very similar to other discussions
of partons passing through the gluon field of another
hadron. A selection of relevant papers is [15,17–19].
Much of that work concerns the small x region, diffractive

scattering, etc., whereas our counterexample applies in the
fully conventional region where normal parton-model con-
cepts are generally considered as fully applicable, i.e.,
parton fractional momenta are moderate and the scale of
the hard scattering is comparable to the center-of-mass
energy rather than being much less.

Of course, interesting simplifications do occur, so that
useful quantitative estimates can surely be obtained for the
nonfactorizing effects. However the methods are rather
different than those for conventional factorization.
References [15,17–19] indicate that the effects of the
eikonalized interactions are substantial, so that the numeri-
cal effects of nonfactorization should be significant; in the
present paper we did not estimate the numerical size of the
nonfactorization.

The gluon exchanges in our counterexample are clearly
tied to the target hadron at their lower end. But the coupling
at the upper end concerns some parton other than the one
coming out of the lower hadron. The noncanceling terms
are sufficiently tied to the color flow at the hard interaction
that they are not universal in any normal sense. This is the
clearest indication of nonuniversality.

The reader should not be misled by specific features of
our counterexample into supposing that the failure of
factorization is correspondingly restricted. These features
include: the use of an SSA, the particular features of the
model, and the particular order of perturbation theory. The
use of the SSA is simply a way of getting the maximal
conceptual sensitivity to problems in constructing a proof
of factorization. For an unpolarized cross section, we
would need an extra gluon to be exchanged in order for
the nonfactorization issues to arise, from graphs such as
those in Fig. 8. Evidently, to demonstrate nonfactorization
explicitly in this case, the number of graphs would be
larger than in our example, and the explicit calculations
would be much more lengthy. Standard power-counting
arguments show that the contribution of this and related
graphs is of leading power. It is very important to deter-

FIG. 8 (color online). The exchange of two extra gluons, as in
this graph, will tend to give nonfactorization in unpolarized cross
sections.

kT FACTORIZATION IS VIOLATED IN PRODUCTION . . . PHYSICAL REVIEW D 75, 114014 (2007)

114014-7

Rogers, Mulders `10

different graphs depending on whether the interaction is in
the initial or final state.

So, we will only consider graphs that can yield contri-
butions from the Glauber region. Since real gluons can
never be in the Glauber region, we will only consider
graphs with virtual gluons. Also, as long as no restrictions
are placed on the target remnant momenta, graphs with
spectator-spectator interactions cancel [5] in the integra-
tion over final states [28]. Similar cancellations occur
between different cuts of the same graph for active-
spectator interactions after parton transverse momentum
is integrated over, and are needed in the standard proofs of
collinear factorization [5]. A counter-proof of TMD-
factorizaton therefore needs to show that such cancella-
tions generally fail when transverse parton momentum is
explicitly taken into account. A specific example of such a
noncancellation was given in Ref. [18] and will be re-
viewed in Sec. IV. In graphs with attachments between
active quarks, there are not enough Dirac !-matrices to
give spin dependence to the TMD PDFs. Such graphs will
therefore not affect our discussion of single and double
spin asymmetries at lowest nonvanishing order.
Furthermore, graphs with a scalar-scalar-gluon-gluon ver-
tex do not give leading power contributions to eikonal
factors.

We remark that, because the TMD factorization break-
ing effects are due to the Glauber region where all compo-
nents of gluon momentum are small, the interactions
responsible for breaking TMD factorization are associated
with large distance scales.

In our specific model, a large number of graphs vanish
simply because of the highly simple color structure in-
volved. Examples are shown in Fig. 2. They vanish because
their color factors include a trace around a color loop of a
single SUðNcÞ generator, TrC½ta$ ¼ 0. (The C on the
TrC½& & &$ denotes a trace over triplet color indices.)

Hence, the relevant types of graphs are represented by
Figs. 3–8. If a generalized TMD-factorization formula is
possible, then the sum over all such graphs must produce a
factorized form like Eq. (3) with a Wilson line structure in
the TMD PDF or FF for each hadron separately. We will
consider each type of graph in the following sections.

III. ONE EXTRA GLUON

We begin the investigation of diagrams by reviewing the
steps for determining the contribution from a single extra
gluon. As in Ref. [17], we focus on the calculation of an
SSA. We start with graphs of the type shown in Fig. 3,
where the extra gluon attaches on the side of the hard part
nearest to its parent hadron. Any spin asymmetry disap-
pears in the zeroth order cross section, Fig. 1 because there
are too few Dirac matrices to produce a nonzero result in
the traces with !5.
Consider, for example, Fig. 3(a). The arrow on the gluon

line indicates that it is collinear to H1. By first deforming
the l integral out of the Glauber region to the H1-collinear
region, one may replace the intermediate struck quark line
of momentum k3 ' l by the eikonal factor

tagn"1
'lþ þ i#

¼ 'gtan"1 P:V:
1

lþ
' igtan"1 $%ðlþÞ; (8)

where n"1 ) ð0; 1; 0tÞ. The sign on the i# is determined by
the direction of the contour deformation. For the spin-
dependent part, the attachment of the extra gluon at the
spectator produces a factor at leading power equal to

ta

2
TrD½ð 6p1 þmH1

Þ!5s1ð 6p1 ' 6k1 þ 6 lþmc 1
Þ

* !þð 6p1 ' 6k1 þmc 1
Þ$

+ 2ita#jks
j
1l

kpþðmH1
ð1' x1Þ þmc 1

Þ: (9)

When this expression is combined with the imaginary part
of Eq. (8), the factors of 'i and i combine and a contri-
bution to an SSA is obtained. The #jk is the two-
dimensional Levi-Civita symbol with #12 ¼ 1.
If the extra gluon is on the other side of the cut as in

Fig. 3(b), the eikonal factor is

tagn"1
'lþ ' i#

¼ 'gtan"1 P:V:
1

lþ
þ igtan"1 $%ðlþÞ: (10)

The factor from the attachment at the spectator is,

FIG. 2. Typical cases of graphs that vanish when extra gluons are considered because of the trivial color factor, TrC½ta$ ¼ 0.

TED C. ROGERS AND PIET J. MULDERS PHYSICAL REVIEW D 81, 094006 (2010)

094006-6

e.g. TMD factorization is violated in di-jet/di-hadron production
Collins, Qiu `07; Collins `07, Vogelsang, Yuan `07; Rogers, Mulders `10, …



Dijet events with large rapidity gap at the LHC

None of the DGLAP-based Monte Carlo generators using LO or NLO calculations 
can provide a complete description of all measured cross sections and their 
ratios.

2111.04605
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Tools: Soft-Collinear Effective Theory
• Technical challenges


• Glauber gluons are offshell

• Must be included as potential, not dynamical field in the effective 

Lagrangian

• Glauber region is not well defined without additional rapidity regulator 

(on top of dim.reg.) (Rothsten & Stewart ‘20)

• study QCD factorization without 
Glauber region

• Assign scaling behavior to fields

• Expand Lagrangian to leading power

• Resummation with Renormalization 

Group 
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Jet radius and qT joint resummation for boson-jet correlation
(Chien, DYS & Wu  ’19 JHEP)

N1(P1) +N2(P2) ! boson(pV ) + jet(pJ)| {z }
qT

+X

ph ⇠ Q(1, 1, 1)

pnJ ⇠ pJT (R2, 1, R)nJ n̄J

pt ⇠ qT (R2, 1, R)nJ n̄J

ps ⇠ (qT , qT , qT )

pn1 ⇠ (q2T /Q,Q, qT )n1n̄1

Figure 1. Boson+jet production in hadron collisions. Here pV and pJ are the momenta of the
color singlet boson and the jet, and R is the jet radius. By definition ~qT = ~p

J
T + ~p

V
T . The modes

relevant for the observable qT include the soft modes with momentum ps, and the collinear modes
along the two beam directions (n1 and n2) and the jet direction (nJ). Small-angle soft modes are
taken as an independent degree of freedom from those emitted from the jet at wide angle, and its
momentum is denoted as pt. The n1-collinear and n2-collinear modes and soft modes all have a
transverse momentum ⇠ qT , while the nJ -collinear modes carry most of the jet momentum.

quark-gluon plasma (QGP) is produced. Through interactions with the medium, jets in the

event can be significantly modified while the color-singlet boson remains intact that can

serve as a robust reference of the hard scattering process. This makes boson+jet production

a useful channel for studying the properties of QGP though the relation between transverse

momentum broadening and energy loss of jets in high-energy nuclear collisions [45], which

requires a proper resummation of large logarithms [24, 46, 47]. The kinematic information

of the boson+jet system has been explored quite extensively [48–54]. For example, the qT ,

the boson-jet momentum imbalance XJV ⌘ p
J
T /p

V
T , and the azimuthal angle decorrelation

|��JV |: the azimuthal angle between the jet and the boson as measured along the beam

direction, have been experimentally studied in Z+jet [55–59] and �+jet [60] events at the

LHC.

The rest of the paper is organized as follows. In section 2, we analyze all the relevant

degrees of freedom which contribute to qT . We give a detailed derivation of our factorized

expression (2.27) using a two-step matching procedure in SCET. In section 3, we discuss the

renormalization of all the bare functions entering (2.27) and give an all-order resummation

formula in (3.13). We explain the relation between our resummation formula with those in

[24, 25, 28]. The anomalous dimensions relevant for the NLL resummation are also given in

this section. In section 4 we analyze the Sudakov double logarithms, while in section 5.2 we

– 3 –

From the above two equations, one finally has

J k(p2J , ~xT , ✏) !
1X

m=1

hJ k
m({nJ}, R pJ , ✏)⌦ Uk

m({nJ}, R ~xT , ✏)i (2.21)

where h· · · i ⌘ 1

dJ
Tr[· · · ] denotes the trace over all the color indices divided by the dimension

of the color representation of �k
nJ
, and ⌦ is a short-hand notation for

mQ
i=1

R
d⌦~nJi

/(4⇡) with

⌦~nJi
the solid angle of ~nJi in d-dimension. The jet function J k

m with m collinear particles

is defined as

P
↵0
J↵J

nJ J k
m({nJ}, R pJ , ✏) ⌘ 2n̄J · pJ(2⇡)d�1

X

spins

mY

i=1

Z
dEJiE

d�3

Ji

(2⇡)d�2
�

⇣
n̄ · pJ �

mX

i=1

n̄ · pJi
⌘

⇥ �
(d�2)

⇣ mX

i=1

~pJi?

⌘
⇥in({pJ})

���Mk
m(pJ ; {pJ})

ED
Mk†

m (pJ ; {pJ})
��� , (2.22)

and the coft function Um takes the form

Um({nJ}, R ~xT , ✏) = (2.23)
XZ

Xt

e
i
2
poutt ·n̄J~nJT ·~xT h0|U †

n̄J
(0)U †

nJ1
(0) · · ·U †

nJm
(0)|XtihXt|Un̄J (0)UnJ1

(0) · · ·UnJm
(0)|0i.

The set of nJ -collinear particles is defined by the anti-kt algorithm [74] which is used in

jet reconstruction. The phase space constraint imposed by the sequential clustering can

be quite complicated. Alternatively, here we require the angle �Rij between each pair of

collinear particles be smaller than the jet radius R,

�Rij ⌘
q
(�i � �j)2 + (⌘i � ⌘j)2 < R with i < j : 1, 2, · · · ,m. (2.24)

In the small R limit, the above requirement is equivalent to imposing the following step

functions,

⇥in(pJi , pJj ) ⌘ ✓

 
R

2 �
2pJi · pJj
p
Ji
T p

Jj
T

!
, (2.25)

which collectively is denoted by ⇥in({pJ}). The jet algorithm constraint for a coft gluon

with momentum pt is then equivalent to a cone jet algorithm since collinear particles are

clustered and define the jet direction nJ ,

⇥out(pt) ⌘ 1�⇥in(pt, nJ) = ✓

"
nJ · pt
n̄J · pt

�
✓

R

2 cosh ⌘J

◆
2
#
. (2.26)

By making the replacement in (2.21), (2.13) then gives the final factorized expression

d�

d2qTd
2pTd⌘JdyV

=
X

ijk

Z
d
2
xT

(2⇡)2
e
i~qT ·~xTSij!V k(~xT , ✏)Bi/N1

(⇠1, xT , ✏)Bj/N2
(⇠2, xT , ✏)

⇥Hij!V k(ŝ, t̂,mV , ✏)
1X

m=1

hJ k
m({nJ}, R pJ , ✏)⌦ Uk

m({nJ}, R ~xT , ✏)i. (2.27)

– 9 –

Construction of the theory formalism 

• Multiple scales in the problem

• Rely on effective field theory: SCET + Jet Effective Theory (Becher, Neubert, Rothen, DYS ’16 PRL) 

(also see Sun,Yuan,Yuan ’14; Buffing,Kang,Lee,Liu ’18,…)

qT ⌧ Q,R ⌧ 1
<latexit sha1_base64="7GdoLFJ+FhJ+wOuMd4KHAxonnYw="></latexit>
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Numerical results

• NLL resummation is consistent with the LHC data (qT & ΔΦ)

•  ΔΦ distribution for dijet production can be a clean probe of factorization violation 

(Collins & Qiu ’07, Rogers & Mulders ’10, ……)

• NLL result has 20-30% scale uncertainties. Higher-order resummation is necessary

� �� �� �� �� �� ��
�

�

�

�

�

Figure 6. Comparison between the NLL cross section calculations with Pythia simulations, in
the high p

J
T case (top row) and the low p

J
T case (bottom row). In all the plots, the red curves

are the theoretical predictions with the scale choice in (5.1), and the error bands are shown as the
shaded regions. The histograms are the Pythia results at parton (dashed lines) and hadron (solid
lines) levels.

the LO result has an artificial kink structure. The kink structure comes from the neg-

ligence of two jet events with p
J
T < 30 GeV due to such a kinematic cut. Explicitly, at

LO pT and qT are the transverse momenta of leading and subleading jets, respectively.

When qT > 30 GeV, the lower limit of the pT integral is qT . On the other hand, for

qT < 30 GeV the lower limit is frozen at 30 GeV. Hence, we observe such kink structure

near qT ⇠ 30 GeV. The investigation of the kink and its treatment is beyond the scope of

this paper and left for future work.

We also compare our theoretical calculation of the azimuthal angle decorrelation ��

between the boson and the leading jet with the experimental result at
p
s = 7 TeV in [56].

In the numerical integration, we boost the tree-level partonic event such that the boson

and the leading jet have total transverse momentum ~qT as

~qT = qT (sin�q, cos�q). (5.7)

After performing this transformation, the Z boson and the leading jet are not back to back

in the transverse plane. Hence, we obtain the distribution of the azimuthal angle ��(Z, j1)

– 24 –
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Jet definition

Which particles get put together?


How to combine their momenta?

Jet algorithm

Recombination scheme
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Jet definition with clustering algorithms
• Determine distances between “particles”


• Recombine nearest “particles”: 


• Repeat until distances larger than jet radius R

pµi , p
µ
j ! pµi + pµj

<latexit sha1_base64="zACuxVIVSoryJH9Adpj+cyWhgdY="></latexit>
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Recoil and the jet axis

Jet axis is along jet momentum: recoiled by soft radiation in jet

• TH challenge: Non-linear evolution (Non-global logs)

• EX challenge: Contamination


Recoil absent for the pT-weighted recombination 

(Winner-take-all scheme)

(Ellis, Soper ’93)

(Bertolini, Chan, Thaler ’13)
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Recoil-free azimuthal angle for boson-jet correlation

ph ⇠ Q(1, 1, 1)

Standard SCET2 (CSS, Ji-Ma-Yuan …)

(also see Gao,Li,Moult,Zhu ’19 PRL,…)

pn ⇠ (p2x/Q,Q, px)nn̄
<latexit sha1_base64="tOSXyTibV3xKxAp+IpLS6H6kfA4="></latexit>

ps ⇠ (px, px, px)
<latexit sha1_base64="pNx07I/xtuUV2QwWOU3q8k5E8h8="></latexit>

d�

dpx,V dpT,J dyV d⌘J
=

Z
dbx
2⇡

e
ipx,V bx

X

i,j,k

Bi(xa, bx)Bj(xb, bx)Sijk(bx, ⌘J)Hij!V k(pT,V , yV � ⌘J)Jk(bx)

<latexit sha1_base64="LPm3JougTVSfc2d0ZNQLzylbBmY="></latexit>

Following the standard steps in SCET2 we obtain the following factorization formula

(Chien, Rahn, Schrignder, DYS, Waalewijn & Wu  ’21 PLB)

Fourier transformation in 1-D
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Linearly-polarized gluon TMDs
For Higgs production linearly-polarized gluon TMDs arises from spin interference between 
multiple initial-state gluons (Catani, Grazzini '10)

�µ⌫
g (x,pT ) =

n⇢n�

(p · n)2

Z
d(⇠ · P )d2⇠T

(2⇡)3
eip·⇠ hP |Tr [Fµ⇢(0)F ⌫�(⇠)]|P i

⌫

LF

=
1

2x

⇢
�gµ⌫T fg

1

�
x,p2

T

�
+

✓
pµT p

⌫
T

M2
+ gµ⌫T

p2
T

2M2

◆
h?g
1

�
x,p2

T

��

<latexit sha1_base64="eS9WOjbA7lu9GT1DjX1Ez1h1hZA="></latexit>

Boson-jet correlation can be used to probe linear-polarized gluon TMDs inside the 
proton (Boer, Mulders, Pisano, Zhou  ’16)
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Linearly-polarized gluon jets

-� -� -� -� -� -� -� �

�

�

��

��

The linearly-polarized jet function describes the effect of a spin-superposition of the 
gluon initiating the jet

We  provide  evidence  
for  contributions  
from  linearly-
polarized  gluon jet  
functions using 
MCFM

JL
g (~b?, µ, ⌫) =


1

d� 3

⇣ gµ⌫?
d� 2

+
bµ?b

⌫
?

~b 2
?

⌘�2(2⇡)d�1!

N2
c � 1

h0|�(! � n̄·P)�d�2(P?)Ba
n?µ(0)e

i~b?·~̂k?Ba
n?⌫(0)|0i

<latexit sha1_base64="zm8XOs55sT598t49SIM6fxBpRgw="></latexit>

The first non-vanishing order is one loop

JL(1)
g (~b?, µ, ⌫) = �1

3
CA +

2

3
TFnf

<latexit sha1_base64="Z9XyIfb19AgKJ7STcKhgqYwJ3ZQ="></latexit>
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Better angular resolution
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• The angular resolution of jet measurements  is  about  0.1  radians, limiting access 
to the back-to-back region


• This can be overcome by measuring the jet using only charged particles, exploiting 
the superior angular resolution of the tracking systems at the LHC. 

Tracking jet function:

We have verified that using tracks only  
has  a  minimal  effect  on  this  
measurement
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Numerical results

• first N2LL resummation including full jet dynamics

• good perturbative convergence

• Pythia agrees well 

• Our work serves as a baseline for pinning down the factorization violation effects
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Jet charge and Spin asymmetries at the RHIC
(Kang, Lee, DYS, Terry, ’21 JHEP)

Transverse momentum imbalance between dijets

One-loop soft functions in the polarized case are different from the unpolarized counterpart 
beyond LL Liu, Ringer, Vogelsang, Yuan ’20

We apply jet charge tagging to enhance the asymmetry Kang, Liu, Mantry, DYS ’20 PRL

Gluon Sivers function: heavy flavor dijets (Kang, Reiten, DYS, Terry ’21 JHEP)

https://inspirehep.net/literature?q=a%20J.Reiten.1
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Central jet veto in Higgs production via VBF

• Energetic jets in the forward and backward 
directions


• Large rapidity separation and large invariant 
mass of two tagged jets


• Little radiation in the central-rapidity region

• Major QCD backgrounds: t-channel color 
octet exchange 


• Central jet veto can suppresses QCD 
background 


• Central jet veto: no extra jets between 
tagging jets 

Del Duca, Frizzo, Maltoni '05 

VBF signature: 



Jet veto & QCD resummation

• Due to existence of a small scale  pTveto, the fixed order calculations are unreliable


• QCD resummation is necessary, the large log should be resumed to all order


• Standard jet veto resummation for gg->H processes


• Rapidity cut independent

Banfi, Monni, Salam, Zanderighi ’12; 


Becher, Neubert, Rothen ’12, ’13; 


Stewart, Tackmann, Walsh, Zuberi ’12, ’13


• Rapidity cut dependent 

Michel, Pietrulewicz, Tackmann ’18


• Nonfactorizable jet veto in VBF: Superleading Logs


• Four-loop Forshaw, Kyrieleis, Seymour ’06


• Five-loop Keates, Seymour ‘09


• All-order Becher, Neubert, DYS ‘21

Courtesy of Johannes Michel



Jet veto & QCD resummation

• Due to existence of a small scale  pTveto, the fixed order calculations are unreliable


• QCD resummation is necessary, the large log should be resumed to all order


• Standard jet veto resummation for gg->H processes


• Rapidity cut independent

Banfi, Monni, Salam, Zanderighi ’12; 


Becher, Neubert, Rothen ’12, ’13; 


Stewart, Tackmann, Walsh, Zuberi ’12, ’13


• Rapidity cut dependent 

Michel, Pietrulewicz, Tackmann ’18


• Nonfactorizable jet veto in VBF: Superleading Logs


• Four-loop Forshaw, Kyrieleis, Seymour ’06


• Five-loop Keates, Seymour ‘09


• All-order Becher, Neubert, DYS ‘21



Nonfactorizable QCD effects in Higgs production via VBF

• the nonfactorizable correction is comparable to the NNNLO QCD factorizable 
corrections 


• appear for the first time at NNLO, scale dependence is large

Liu, Melnikov, Penin ‘19

nonfactorizable correction:

with

See also Gaunt ’14, Schwartz, Yan & Zhu `17 `18 …



• Such events was originally suggested on the basis of color flow considerations in 
QCD Bjorken ’93


• Global Logs resummation is first done by Oderda & Sterman ’98


• Forshaw, Kyrieleis, Seymour ’06 have analyzed the effect of Glauber phases in non-
global observables directly in QCD


• Non-zero contributions starting at 3 loops


• Collinear logarithms starting at 4 loops: Super-leading logs

27

Central jet veto at the LHC

e+e�, ep : ↵n
s lnn

✓
Q

Q0

◆

<latexit sha1_base64="kBugUguAtnCkRmtBLSmdoHJIrGg="></latexit>

pp : · · · + ↵3
s(i⇡)

2 ln3
✓

Q

Q0

◆
⇥ ↵n

s ln2n
✓

Q

Q0

◆

<latexit sha1_base64="zsCmUajNCltycLW0LBoeqSjHb2I="></latexit>

leading logs:

<latexit sha1_base64="vzIDrY8PqKUjFo1B4X31j3CCHcA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rFF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZ6aPTdfqnsVtw5yCrxclKGHPV+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuqVBuX5dptHkcBTuEMLsCDa6jBPdShCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gDQ/Y1/</latexit>

Q0
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Q

wide angle soft gluon emission developing a sensitivity to emission at small angles
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Simone Marzani’s slide
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All-order QCD resummation of super-leading logs

Super-leading logs from renormalization group 
evolution:

Becher, Neubert, Rothen, DYS ’16 PRL
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Factorization in global event shapes

E.g. Thrust 

Soft radiation does not resolve 
individual energetic patrons. Sensitive 
only to direction and total charge of 
the jets

Simple structure -> N3LL resummation

<latexit sha1_base64="zV98t5kVuyUR/IvBkhOYGdmXv+E=">AAACCXicbZDLSgMxFIYz9VbHW9Wlm2ARXJUZEXVZdOOyQm/QGUomk2lDk0xIMkIZ5gncudWXcCdufQrfwYcwbWehrT8EPv5zDufkjySj2njel1NZW9/Y3Kpuuzu7e/sHtcOjrk4zhUkHpyxV/QhpwqggHUMNI32pCOIRI71ocjer9x6J0jQVbTOVJORoJGhCMTLW6rdhoCmH/rBW9xreXHAV/BLqoFRrWPsO4hRnnAiDGdJ64HvShDlShmJGCjfINJEIT9CIDCwKxIkO8/m9BTyzTgyTVNknDJy7vydyxLWe8sh2cmTGerk2M/+rDTKT3IQ5FTIzRODFoiRj0KRw9nkYU0WwYVMLCCtqb4V4jBTCxkbkukFMEhjINDMwl8M8UBxaLgrXxuMvh7EK3YuGf9W4fLisN2/LoKrgBJyCc+CDa9AE96AFOgADBp7BC3h1npw35935WLRWnHLmGPyR8/kDCyqZTg==</latexit>

T ⇠ 1

…
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Factorization for gap between jets in e+e-
(Becher, Neubert, Rothen, DYS, ’16 PRL, ’16 JHEP; Caron-Huot ’15 JHEP)

�(Q,Q⌦) ⇠
1X

m=2

mY

i=1

Z
d⌦(~ni)

4⇡
Trc [Hm({~n1, · · · ,~nm}, Q, µ)Sm({~n1, · · · ,~nm}, Q⌦, µ)]
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Integrate the angles for hard partons# of jet not fixed

Hard scale Soft scaleColor Trace



Collinear singularities and SLLs at hadron colliders

One-loop anomalous dimension:

⇧ij = 1
<latexit sha1_base64="/I/Njm1AoMgrmRowJgu0eav2I+I="></latexit>

if both incoming 
or outgoing

In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [27]. We don’t want

to repeat the entire discussion here, but we give the algorithm in Appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]

�(1) =

0

BBBBBB@

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .

...
...

...
...

. . .

1

CCCCCCA
. (2.4)

The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij ,

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) , (2.5)

where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W
k

ij =
ni · nj

(ni · nk)(nj · nk)
, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
l�2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

�
LL(Q,Q0) =

1X

m=2

⌦
H2({n1, n2}, Q, µh)⌦U2m({n}, µs, µh) ⌦̂1

↵
. (2.7)

– 5 –

Individually Rm and Vm contain singularities when emitted gluon k gets collinear to 
parsons i or j. 


• Expect cancellation in inclusive soft observables such as gaps between jets at 
lepton colliders


• Glauber phases spoil this cancellation: soft+collinear double logs! “Super-
leading logs”



Simplification of the imaginary part

Imaginary part of the anomalous dimension:

For pp:For e+e-:

Hm Rm =
P
(ij)

11

22

3

m

i

j
M M

†

Hm V m =
P
(ij)

ii

j
M M

† +
ii

j
M M

†

Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.

Hm RC = ...
...

11

22

M M
† + ...

...

11

22

M M
†

Hm VI =

11 11

22 22

M M
† +

11 11

22 22

M M
†

Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.

1

Figure 1. Action of the operator the real part Rm and the virtual piece Vm of the anomalous
dimension on the hard function Hm. The sums run over all pairs of unordered indices i, j = 1 . . . m.
Due to the emitted gluon (blue), the product HmRm defines a hard function with m + 1 external
legs, while the virtual correction (red) HmVm has m legs.

rise to the angular integral in the first line of Vm, while cutting the two eikonal propagators

yields the imaginary part in the second line. This imaginary part is called the Glauber or

Coulomb phase, since it arises from a region of phase-space where kµ
⇡ kµ

?.

The imaginary part can be simplified using color conservation
P

i Ti = 0. For con-

creteness, consider the process 1 + 2 ! 3 + · · · + m. We then have

X

(ij)

Ti · Tj ⇧ij = 2T1 · T2 +
mX

i=3

Ti · (�T1 � T2 � Ti) (3.7)

= 2T1 · T2 + (T1 + T2) · (T1 + T2) �

mX

i=3

Ci (3.8)

= 4T1 · T2 + C1 + C2 �

mX

i=3

Ci (3.9)

The constant imaginary part arises both from the generators Ti,L acting on the amplitude

and the generators Ti,R acting on the conjugate amplitude. These terms cancel in the

anomalous dimension. In case where one or both incoming particles are color-neutral the

term T1 · T2 is not present and the Coulomb phase never contributes to the cross section.

The phase terms completely vanish and can be dropped from the anomalous dimension

matrix as we did in our previous paper [2]. A nontrivial phase can arise if the initial state

carries color, as is the case for the partonic amplitudes relevant for hadronic collisions.

4 Collinear singularities

[The following discussion has one weakness: it is based on the soft limit and

therefore only captures soft+collinear divergences. To get the full anomalous

dimension, one will need to add the initial-state purely collinear divergences,

which are obtained using collinear factorization based on splitting functions.

– 4 –
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Extracting the collinear singularities: 

The one-loop anomalous dimension is

with
<latexit sha1_base64="K6MvVDWEMROCFNnQAwbtPZRcLB0="></latexit>

V m = 2
X

(ij)

(T i,L · T j,L + T i,R · T j,R)

Z
d⌦ (nk)

4⇡
W̄ k

ij

V c
i = 4Ci1

V G = �8i⇡ (T 1,L · T 2,L � T 1,R · T 2,R)

<latexit sha1_base64="emTpjk9aW5MBirlXWRt4JVt/wJ4="></latexit>

Rm = �4
X

(ij)

T i,L � T j,RW̄
m+1
ij ⇥hard (nm+1)

Rc
i = �4T i,L � T i,R� (nk � ni)
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Hard function for octet exchange: 

Action of the anomalous dimension

Compute
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Leading super-leading logs

1. Want the maximum numbers of logs, i.e. the maximum power of  

2. Need two imaginary parts VG to spoil cancellation of collinear singularities

3. Need at least one real emission     to resolve the gap region

Three properties of the anomalous dimension greatly simplify the calculations

• Color coherence


• Cyclicity of the trace
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Leading super-leading logs

The super-leading logs at (3+n) order are associated with color traces of the form
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Figure 1: Action of the operator the real part Rm and the virtual piece Vm

of the anomalous dimension on the hard function Hm. The sums run over
all pairs of unordered indices i, j = 1 . . . m. Due to the emitted gluon (blue),
the product HmRm defines a hard function with m + 1 external legs, while
the virtual correction (red) HmVm has m legs.
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Figure 2: Action of the imaginary part VI (red dotted line) and the collinear
real-emission piece RC on the hard function. After the simplifications dis-
cussed in the text, these parts only involve legs 1 and 2. The real correc-
tions HmRC involve one additional hard gluon (dashed blue line) which is
collinear to one of the incoming legs.
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virtual piece Vm on a hard function Hm. Due to the emitted

gluon (blue), the product Hm Rm defines a hard function

with (m+ 1) external legs.

where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.
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where the color indices a and ã refer to the emitted gluon.
We use the symbol � to indicate the presence of the ad-
ditional color space of the emitted parton. Subsequent
applications of the anomalous-dimension matrix can act
on these indices. In the simplest case of a single cut prop-
agator as in Figure 1, the indices are contracted with �ãa.
On the other hand, if an additional gluon with group in-
dex b is attached to the emitted parton, the indices get
contracted with (�if bãa).

The operators Vm and Rm encode soft singularities
arising when a virtual or real soft parton is exchanged
between two di↵erent legs of the hard function. The
squared amplitude for the exchange is a product of the
eikonal factors for each leg, and the notation (ij) on
the sums in (6) indicates a pair of unordered indices
i, j = 1, . . . , m. We use a bar to indicate that the
collinear limits of the emissions are subtracted, i.e.

W
k
ij =

ni · nj

ni · nk nj · nk
� �(nk � ni)

ni · nk
� �(nk � nj)

nj · nk
. (9)

The angular �-distributions only act on the test function.
The collinear singularities in the soft anomalous di-

mension are encoded in Rc
i and V c

i , both of which are
proportional to the cusp anomalous dimension (as indi-
cated by the superscript). These operators multiply a
logarithm of the hard scale, which when inserted into (3)
gives rise to Sudakov double logarithms. We show below
that all final-state collinear singularities cancel between
real and virtual contributions, and for this reason only
the initial-state pieces (with i = 1, 2) must be kept in (6).
The cancellation for the initial-state terms is spoiled by
the complex Glauber phases in V G, also referred to as
Coulomb phases [2]. These arise whenever soft partons
are exchanged between two final-state legs or two initial-
state legs. Using color conservation,

Pm
i=1 Hm T a

i = 0,
the phase terms can be rewritten in the form of V G,
which makes it obvious that they are only relevant for
processes involving (at least) two colored partons in the
initial state.

Three properties of the di↵erent components of the
anomalous dimension greatly simplify our calculations.
Color coherence, the fact that the sum of the soft emis-

sions o↵ two collinear partons has the same e↵ect as a
single soft emission o↵ the parent parton, implies that

Hm �c � = Hm ��c , (10)

where we have defined �c =
P2

i=1(R
c
i+V c

i ) and Hm � ⌘
Hm (Rm + Vm). Next, the cyclicity of the trace ensures
that

hHm �c ⌦ 1i = 0 ,
⌦
Hm V G ⌦ 1

↵
= 0 .

(11)

The first of these relations is a consequence of collinear
safety: the singularity associated with a collinear real
emission cancels against the one in the associated virtual
correction. It is trivial to verify this, because

hHm (Rc
i + V c

i ) ⌦ 1i / hT a
i Hm T a

i � Ci Hmi = 0 .
(12)

The three properties hold for an arbitrary hard function
Hm, which can be obtained from the tree-level hard func-
tion after applying the one-loop anomalous dimension
several times.

We extract the leading contributions to (3) by consid-
ering products of �c, � and V G, only the first of which
gives rise to double logarithms. In the absence of V G,
we could use relation (10) to move all occurrences of �c

to the last step, where they give a vanishing contribution
due to (11). (Even in the presence of V G this can still be
done for all final-state partons, and for this reason we did
not include terms with i 6= 1, 2 in the definition of �c.)
To get the SLLs, we thus need two insertions of V G. A
single insertion gives zero, since the cross section is real.
Due to the two properties in (11) we also need one power
of � in the last step of the evolution. Therefore, the SLLs
at (3 + n)th order in perturbation theory are associated
with color traces of the form

Crn =
⌦
H4 (�c)r V G (�c)n�r V G � ⌦ 1

↵
, (13)

where 0  r  n. This explains why the SLLs first
appear at four-loop order. However, the three-loop term
(n = 0) originates from the same color structures and is
numerically significant, even though it only involves the
imaginary part ⇡ = | ln(�1)| of the large logarithm.

To get the corresponding contribution to the partonic
cross section, we must combine the color traces Crn with
the associated ordered integrals in (3). Each factor of �c

is multiplied by a logarithm of µ, see (6), which produces
a double logarithm upon integration. Neglecting the run-
ning of the coupling ↵s, setting µ2

h = ŝ and evaluating
the integrals, we find with L = ln(

p
ŝ/µs)

�̂SLL
n =

⇣↵s

4⇡

⌘n+3
L2n+3 (�4)n n!

(2n + 3)!

nX

r=0

(2r)!

4r (r!)2
Crn ,

(14)
which makes it explicit that starting from four-loop order
two logarithms per loop arise.

The SLLs first appear at four loop (n=1)


The three loop terms (n=0) can be numerically significant


We consider the case where particles 1 and 2 transform in the fundamental 
representation of SU(Nc)
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Crn = 28�r⇡2 (4Nc)
n
{

X

j>2

JjhH4[(T 2 � T 1) · T j + 2r�1Nc (�1 � �2) dabcT
a
1T

b
2T

c
j ]i

+ 2 (1� �r0) J2 hH4 [CF + (2r � 1)T 1 · T 2]i}

4

The relations (11) imply that the color traces Crn can
be simplified by working out the commutators [V G,� ]
and [�c, [V G,� ]]. Under the trace, we find that both
commutators evaluate to the same structure apart from
a factor (4Nc). We thus obtain

Crn = �64⇡ (4Nc)
n�r fabc

X

j>2

⌦
H4 (�c)r V GT a

1 T b
2 T c

j

↵

⇥
Z

d⌦(nk)

4⇡

⇣
W

k
1j � W

k
2j

⌘
⇥veto(nk) . (15)

The sum over j contains the final-state partons of the
Born process and the collinear gluons emitted from the r
remaining insertions of �c, but not the initial-state par-
tons 1 and 2. The contributions where j refers to one
of the collinear gluons emitted from the first (n � r) in-
sertions of �c in (13) vanish. The gluon with label k
originates from the insertion of � and must be attached
to one initial-state and one final-state parton. The con-
straint ⇥veto(nk) = 1 � ⇥hard(nk) restricts the emission
to the veto region and arises from the incomplete cancel-
lation of real and virtual terms in �. Since the direction
nk in (15) is in the veto region, it cannot be collinear
to the directions n1, n2 or nj . As a consequence, the
collinear subtraction terms in (9) vanish, and one can

replace W
k
ij ! W k

ij in (15).
All information about the phase-space restrictions on

the direction of parton k are contained in the angular
integrals

Jj =

Z
d⌦(nk)

4⇡

�
W k

1j � W k
2j

�
⇥veto(nk) . (16)

The parton j can either move along the directions n1

and n2, when it is attached to one of the collinear gluons
emitted by the insertions of Rc

i , or it is one of the final-
state partons. Since W k

ii vanishes we have J1 = �J2.
There are thus (l + 1) independent kinematic structures
for a 2 ! l jet process. For the gap between jets case, we
find that Jj = +�Y if the rapidities of particles j and 1
have opposite signs, and Jj = ��Y otherwise.

A more complicated structure arises when one com-
mutes the remaining insertion of V G in (15) all the way
to the right. This leads to an expression involving anti-
commutators of color generators, which in general cannot
be simplified using the Lie algebra of SU(Nc). Here we
consider the important special case where particles 1 and
2 transform in the fundamental representation. We can
then use the relation

{T a
i , T b

i } =
1

Nc
�ab 1 + �i dabc T c

i ; i = 1, 2 , (17)

where the color-space formalism implies that �i = 1 for
an initial-state anti-quark and �i = �1 for an initial-
state quark. In this case a closed expression for the color
traces Crn can be obtained, which involves only three

non-trivial color structures:

Crn = 28�r⇡2 (4Nc)
n

⇢ X

j>2

Jj

⌦
H4

⇥
(T2 � T1) · Tj

+ 2r�1Nc (�1 � �2) dabc T a
1 T b

2 T c
j

⇤↵
(18)

+ 2 (1 � �r0) J2

⌦
H4

⇥
CF + (2r � 1) T1 · T2

⇤↵�
.

The generalization of this result to the case of arbitrary
representations involves a significantly larger number of
color structures and will be discussed elsewhere [20].

As a first application of the general result (18) we con-
sider quark-quark scattering. In this case the tree-level
hard function has two possible color structures, octet or
singlet, corresponding to gluon or photon exchange be-
tween the quarks. For the two cases, we get

C(O)
rn = �̂B 28�r⇡2 (4Nc)

n

CFJ43

+
J2

Nc

�
N2

c � 2r+1 + 1
�
(1 � �r0)

�
, (19)

C(S)
rn = �̂B 28�r⇡2 (4Nc)

n CF

⇥
� J43 + 2J2 (1 � �r0)

⇤
,

with J43 = J4 � J3, and �̂B = hH4i is the Born-level
partonic cross section. Assuming forward scattering as in
[2], the angular integrals evaluate to J2 = J43/2 = �Y .
Using these expressions in (14) and setting n = 1, we
recover the results of [2]. Repeating the calculation for
n = 2 we confirm the findings of [7]. As a further check of
(18), we have written a computer code based on Color-
Math [15] to directly evaluate the color structures Crn

for fixed values of r and n. Using this code, we have
checked the general formula for qq ! qq, qq̄ ! qq̄ and
qq̄ ! gg scattering up to eight-loop order.

The dependence of Crn in (18) on n and r is powerlike,
and it is possible to perform the sum over the infinite
tower of SLLs in closed form:

��̂ =
1X

n=0

�̂SLL
n = �̂B

⇣↵s

4⇡

⌘3
L3f(w) , (20)

where w = Nc↵s
⇡ L2 encodes the double-logarithmic de-

pendence. The function f(w) can be expressed in terms
of hypergeometric and related functions [20]. For the
singlet case, we get for forward scattering

��̂(S) = ��̂B
4CF

3⇡
↵3
s L3�Y 2F2

�
1, 1; 2, 5

2 ; �w
�
. (21)

While the explicit form is not particularly illuminating, it
is interesting to study the asymptotic behavior for w !
1. Ordinary Sudakov double logarithms are resummed
to the form e�cw and are thus strongly suppressed in this
limit, while the function f(w) ⇠ (ln w)/w falls o↵ much
slower.

with the angular integrals:
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All-order results of leading SLLs

Sudakov suppression of the superleading 
logarithms is weaker than the one present 
for global observables 
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Summary and outlook
• Factorization is at the heart of any quantitative prediction using pQCD at 

hadron colliders


• We investigate naive factorization violation effects using jet processes


• Azimuthal decorrelation: tracking jets 


• Spin Asymmetry: charge tagged jets


• Gap fraction: all-order results of superseding logs


• Our EFT and the renormalization group-based approach provide a 
transparent understanding of the underlying dynamics


• Our findings indicate that SLLs could have an appreciable effect on 
precision observables, e.g. Higgs production via VBF


• Understand the low energy theory from Glauber gluons ?


• High order super-leading logs ? Thank you
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