

Institute of High Energy Physics Chinese Academy of Sciences

Charged Particle Identification in Delphes

<u>Siman Liu</u> , Gang Li

CEPC Tracker Layout Working Hour Mar 18th, 2022

Outline

- Introduction
- Goals
- Method
- The current progress
- Summary

Physical background

- The Standard Model (SM)
 - It describes the **strong**, **weak** and **electromagnetic** interactions. (under the framework of quantum gauge field theory)
 - The theoretical predictions of SM are in excellent agreement with the past experimental measurements.
- Higgs boson
 - Helps to our understanding of the origin of mass of subatomic particles.
 - Was recently discovered of the predicted fundamental particle, by the ATLAS and CMS experiments
 - Its discovery confirmed the Higgs Mechanism.

CEPC's physical goals

- to measure properties of Higgs boson as precise as possible
 - Higgs Factory
 - Properties: mass, spin, CP nature, couplings, and etc.
- Be upgraded to a proton-proton collider
 - Reach unprecedented high energy and discover New Physics
- three different modes
 - H (e⁺ e⁻ ->ZH) (240 GeV)
 - W (e⁺ e⁻ ->W⁺ W⁻) (160 GeV)
 - Z (e⁺ e⁻ ->Z) (91 GeV)

CEPC event generate

- Luminosity
- quantity

Operation mode	Z factory	W threshold scan	Higgs factory
Ecm (GeV)	~91.2	158 – 172	240
L(10 ³⁴ cm ⁻² s ⁻¹)	17 - 32	10	3
Running time (years)	2	1	7
Integrated luminosity (ab ⁻¹)	8 - 16	2.6	5.6
Higgs yield	-	-	10 ⁶
W yield	-	107	108
Z yield	1011-12	109	109

CEPC collider ring (100km)

The 4th conceptual detector design

Goals

- Delphes (a detector response simulation framework)
 - Input
 - A monte-carlo event file
 - A confifiguration card (.tcl)
 - Output
 - A root file
- CEPC detector simulation
 - Charged particle : Momentum, impact parameter
 - Neutral particle: energy
 - Jet: perform jet-clustering with the charged and neutral particle as input
 - But PID ability is not available.

• This work is to add PID ability by combining dn/dx and tof.

Method

Charged Particle Identification

- Using dN/dx and tof The most likely assumption is taken
 - Get the probabilities of particles to be assuming as five types of particles.
 - e, μ, π, K, p

Method

The calculation of the probability

$$\chi_1 = \frac{(dN/dx)_{meas} - (dN/dx)_{exp}}{\sigma} \qquad 2.3\% \ (dndx)_{exp} \qquad \chi_2 = \frac{tof_{meas} - tof_{exp}}{\sigma} \qquad 50 \text{ps}$$

 $(dN/dx)_{exp}$: the corresponding dn/dx from $\beta\gamma$ calculated from the masses of different particles

$$tof_{exp}$$
: $tof_{exp} = \frac{L}{v} = \frac{L}{\beta c}$ $\beta = \frac{p}{\sqrt{p^2 + m^2}}$

 $\chi^2 = \chi_1^2 + \chi_2^2$ (It follows a Chi-square distribution of 2 degrees of freedom)

get five chi-squared values for five particles

five probabilities

The most likely assumption is taken

PID efficiency

the preliminary average identification results are shown in the table below :

(conciderate all five particles)

correct number accuracy truth number 862 354 0.410673 е 4646 2391 0.514636 u 22612 0.718891 31454 pion kaon 0.908672 4774 4338 16610.941076 1765 p

Probability > 0.1%

increasing

The probability is roughly within reasonable bounds

PID efficiency dependence on $\cos\theta$

Considering π and μ are easily confused, we only identify 3 particles: π , K, p (the quality of π is close to μ 's) Probability > 0.1% Pion PID efficiency

- When cosθ < 0.8, The PID performance is better.
- It is consistent with the expectation of CEPC (shown on the next page)

The distribution of particle angles in the detector:

 About cosθ < 0.854, All the particles hit the detector.

(This result comes from the study by Youhi Yun et al)

Kaon PID efficiency dependence on momentum

only identify 3 particles: π , K, p (Probability > 0.1%, $\cos\theta < 0.8$)

• The general trend is consistent

Summary

• Summary

- After many previous tests, the framework of PID part is in place.
- But there are still many details that need to be revised to be more realistic.
 - The resolution of dN/dx and tof
 - Criterion for the identification of particles
 - Etc.

Next to do

- More validations
- Demonstrate the significance of PID on physics study.

Thanks!