

Status of the CEPC SDHCAL

Weihao Wu (SJTU)

On behalf of the CEPC Calorimeter Group 3/23/2022

Outline

- Background introduction
- SDHCAL prototype testbeam data analysis
- GRPC built and performance study
- Timing electronics development
- RPWELL prototype and testbeam results
- Summary

SDHCAL Prototype

- Semi-Digital Hadronic CALorimeter (SDHCAL) is one of the PFA calorimeter solutions for CEPC.
- Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

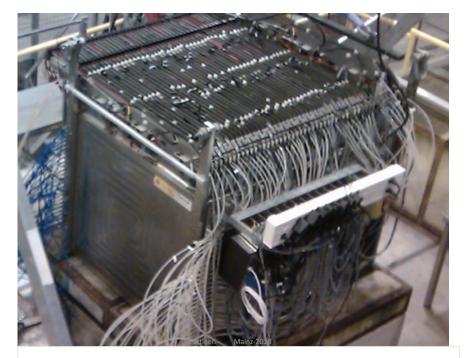
 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)


 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

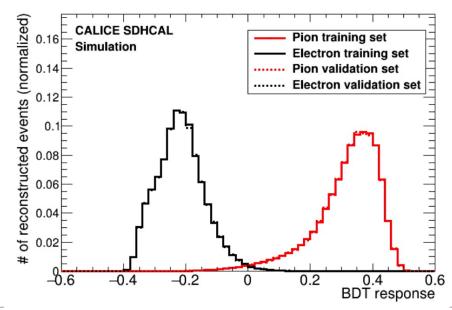
 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1cm)

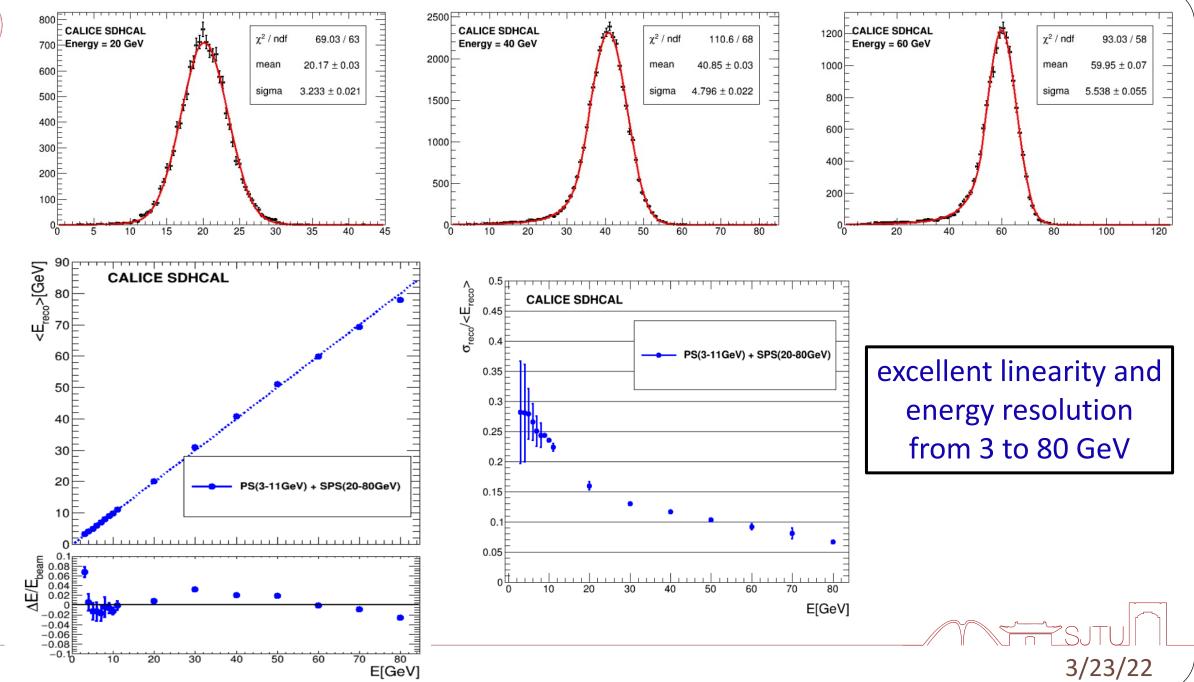
 Migh granularity calorimeter based on Glass RPC (cell size 1cm × 1
- Mits associated to three thresholds:
 - 1st threshold = 110fC
 - 2nd threshold = 5pC
 - 3rd threshold = 15pC
- 48 layers with GRPC as sensitive medium
 - \rightarrow Dimensions: $1m \times 1m \times 1.3m$
- \odot 6 Interaction length $(6\lambda_I)$
 - → Semi-digital readout

SDHCAL prototype at testbeam in 2015



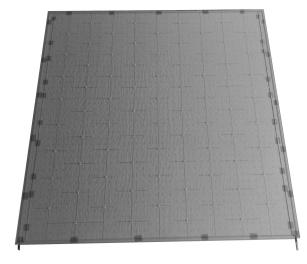
Particle Identification using BDT

- PS and SPS testbeam at CERN in 2015
 - PS beamline: 3, 4, 5, 6, 7, 8, 9, 10, 11 GeV
 - SPS beamline: 10, 20, 30, 40, 50, 60, 70, 80 GeV
 - Contamination particles: eletrons and muons

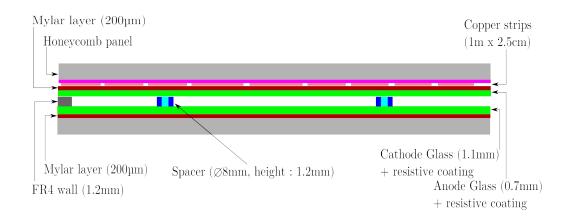

https://arxiv.org/pdf/2202.09684.pdf

- A testbeam data analysis draft recently has been submitted to Jinst.
 - Use BDT to reject electron background from pion samples in the energy range of 10 to 80 GeV

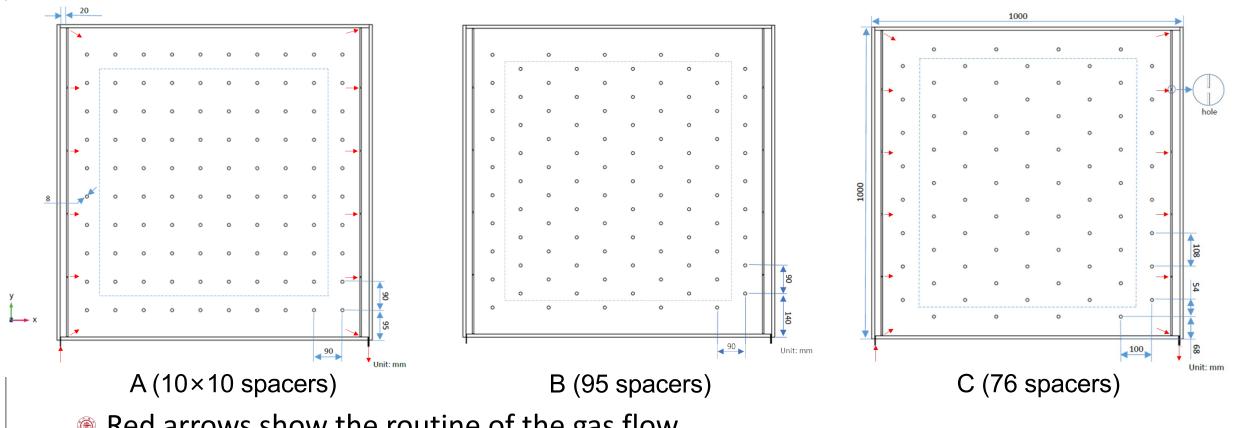
Distribution of the BDT output of training and validation set using the simulated electron (black) and pion (red) events from 1 GeV to 80 GeV.


Glass RPC Build and Test

1m × 1m RPC chambers has been built and tested at SJTU

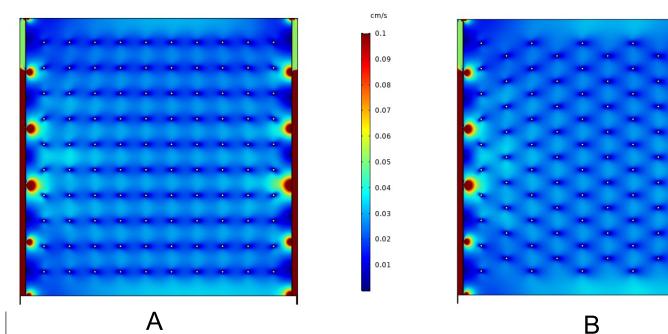


Cosmic muons test setup


Glass RPC Build and Test

- The uniformity of the gas flow in the chamber and the deformation of the electrode plates are critical to the performance and/or aging of RPC.
- During the course of making a RPC, we need spacers to keep the thickness of gas gap uniform. Also, the spacers will affect the gas flow.
- Mere a software named COMSOL Multiphysics is used to simulate the gas flow and deformation of the electrodes for RPCs with different spacer configuration by finite element method.

Different Spacer Configurations in RPC



- Red arrows show the routine of the gas flow
- The center part of the chamber marked by the dashed lines is used for result comparison

Velocity inside the RPC Chamber(Input: 1L/h)

17.5%

20.3%

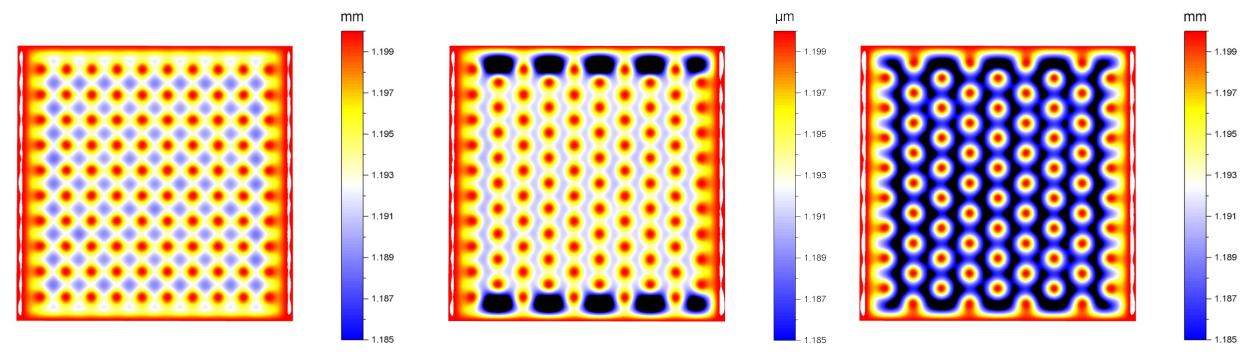
0.1				•		•		•	
0.09	•		•		•		•		
0.03		•		•		•		•	
0.08			•		•		•		•
0.07									
0.07	6								
0.06	· .								
0.05		•		•		•		•	
			•		•		•		•
0.04		•				•		•	
0.03	•		•		•		•		•
0.00				•		•		•	
0.02	•						•		
0.01									
0.01									

Α

RMS/mean

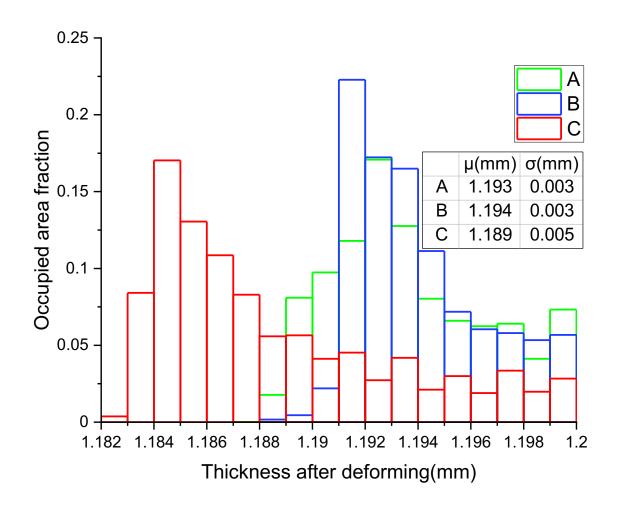
Model	A	В	С
Mean velocity(mm/s)	0.238	0.234	0.241
RMS of velocity(cm/s)	0.049	0.045	0.042

19.3%


Shifting the spacers helps to make the distribution of velocity more uniform

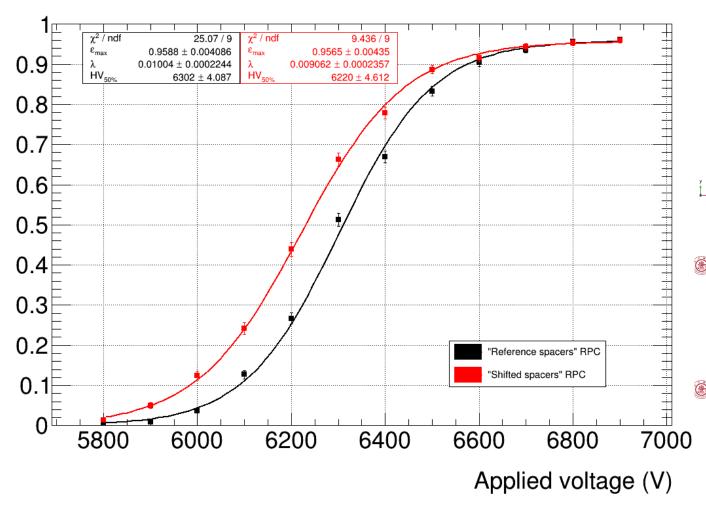
The distribution of velocity gets more uniform after reducing the number of the spacers

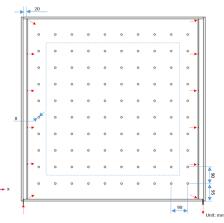
Deformation of the Glass Electrodes

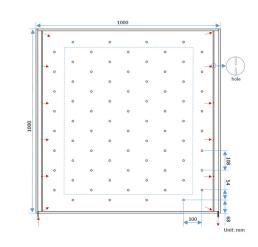

The simulation of chamber deformation on the electrodes is carried out by using pressure of gas flow and an electric field between two electrodes which is applied at 6.6 kV (working voltage of our RPC).

Distribution of the thickness of the gas gap after deformation(1.2mm before)

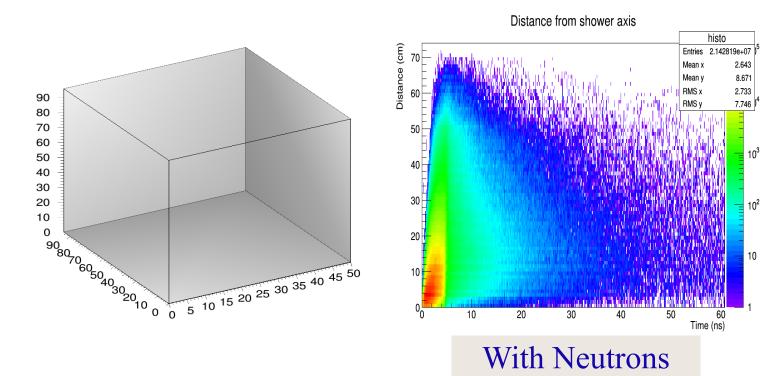
Thickness Distribution of the Gas Gap

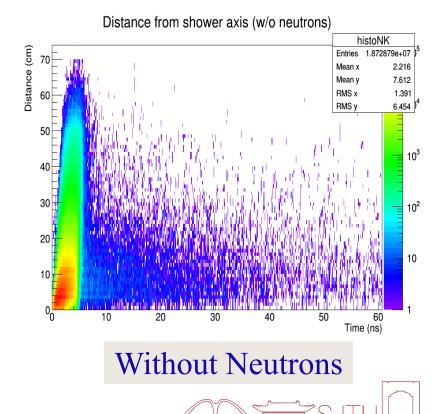

Model	A	В	C	
RMS/mean	0.25%	0.25%	0.34%	


The increase of the distance between spacers would cause more deformation on both electrodes, but still within 1%



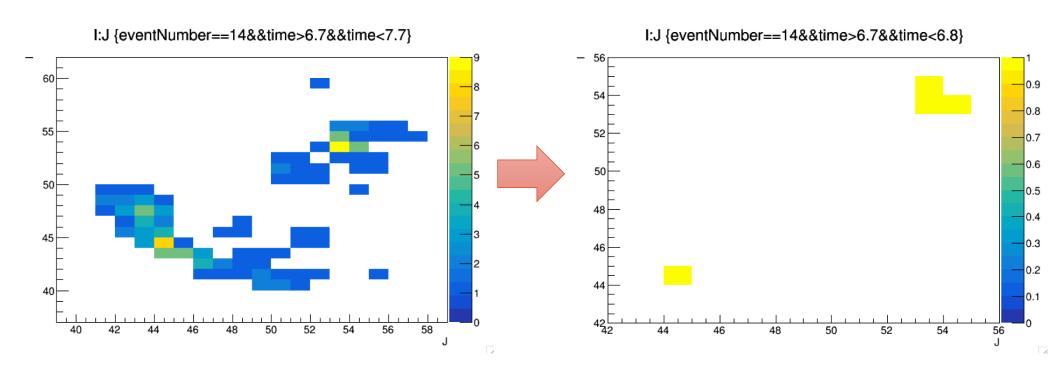
Performance Comparision




- The efficiency plateaus are comparable for the two chambers are both greater than 95%
- 2021 JINST 16 P12022

Motivation using Timing Information

Timing could be an important factor to identify delayed neutrons and better reconstruct their energy.

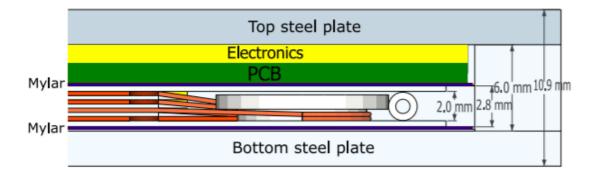


Motivation using Timing Information

Time information can be very helpful to separate close-by showers and reduce the confusion for a better PFA application.

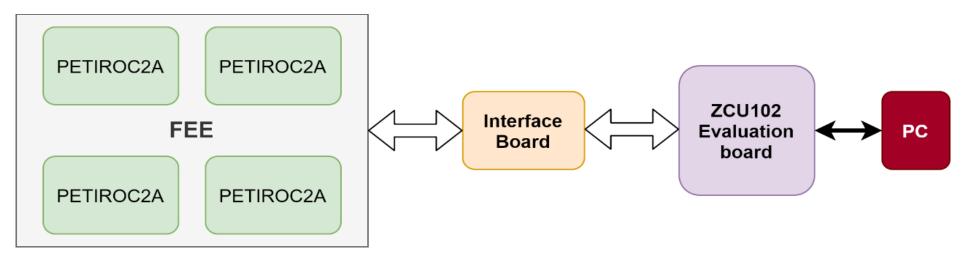
1 ns resolution

100ps resolution

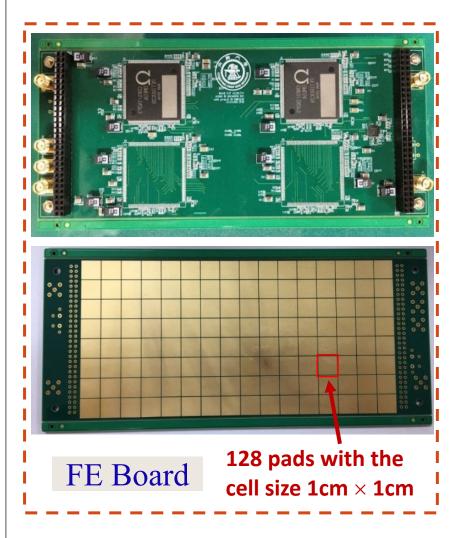


Fast Timing Measurement

- Purpose: => Identify neutral and charged hadrons
- Position, Energy and Timing => 5D HCAL
- Adding MRPC layers in the SDHCAL
- Fast timing readout electronics for MRPC readout
 - PETIROC from Omega group (resolution: ~40 ps)

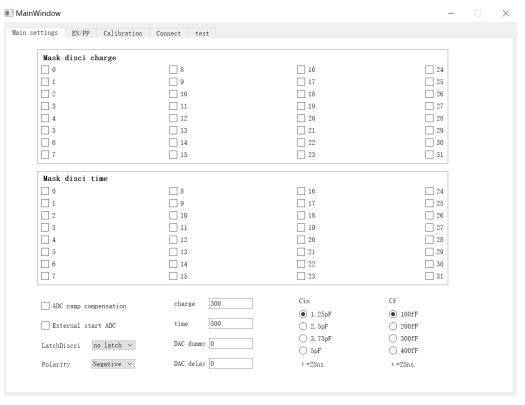

- First step:
 - Design a FE prototype with four PETIROC2B chips

Prototype of Timing Electronics


- The FEE prototype includes four PETIROC chips, 128 readout pads on the PCB bottom side for MRPC induction signals.
- Detector Interface(DIF) card was designed to connect FEE and FPGA board
 - Data transmission, power rail and clock source.
- The DAQ system should be developed to transfer data between FEE and PC.

Block diagram of timing electronics prototype

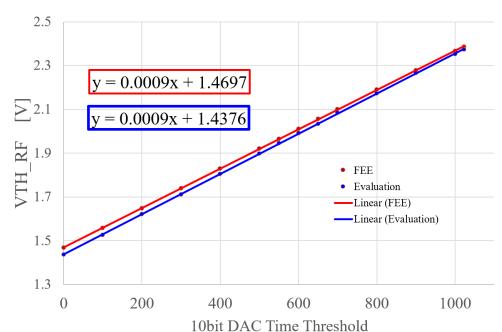
Hardware of Timing Electronics Prototype

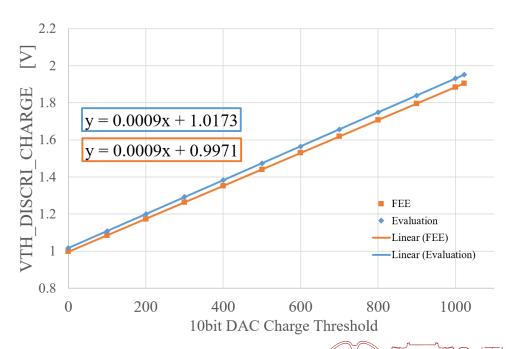


DAQ Software

- Software developed with python language by QtCreator
- The configuration set in the software and sent to the FPGA over ethernet with TCP
- Data received from FEB, saved to the PC side.

Main settings	EN/PP Calibration	on Connect	test			
待发送数据						
				1		
	发送	打印648bit	导出到文本	文本名称:	reg_10_14. txt	
接收信息						
Z IX IH Z						
	重定向到文本	结束重定向	清屏	文本名称:	data_10_14. txt	
本机ip	192. 168. 31. 166	连接状态	未连接	建立服务器		断开连接
本机端口	12345	连接模式	TCP ~	<u></u>		WITTER

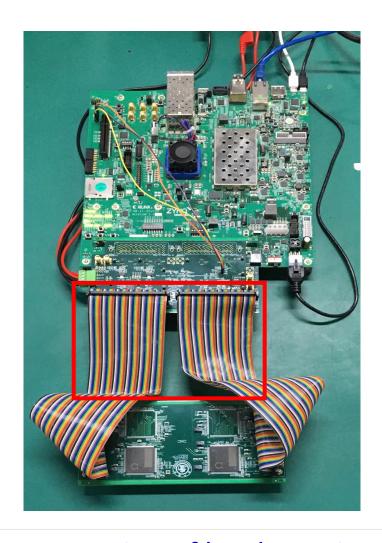



Time and Charge Threshold Voltage Test

- All of bias voltage values are correct.
- Output data has been checked, after sending trigger signals.

Bias Voltage	Value(V)		
vref_inpdac	0.989		
vref_time	1.664		
vref_charge	0.976		
vref_tdc	0.133		
vref_adc	0.961		
vref_time_pad	1.658		

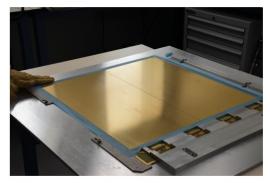
- Time threshold is correct according to the voltage value with 10bit DAC.
- Time and Charge threshold can be well controlled.

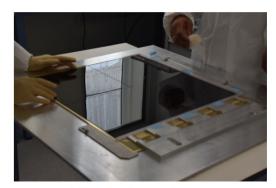


Status of System Test

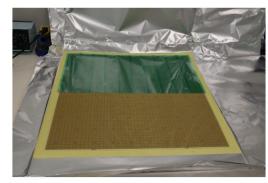
© Crossstalk exists in the injection test!

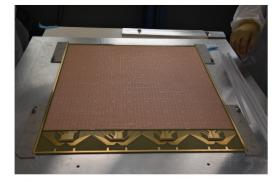
```
ChO : 64 Coarsetime: 1100011101, Decode: 100001011 ==> Counter: 267, Hit: 1
Ch1 : 65 Coarsetime: 1000010110, Decode: 111110010 ==> Counter: 498, Hit: 0
Ch2 : 66 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 0
Ch3 : 67 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch4 : 68 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch5 : 69 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch6 : 70 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch7 : 71 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch8 : 72 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch9 : 73 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch10: 74 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch11: 75 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 6
Ch12: 76 Coarsetime: 1111100010, Decode: 101011110 ==> Counter: 350, Hit: 0
Ch13: 77 Coarsetime: 1001011110, Decode: 111001010 ==> Counter: 458, Hit: 6
Ch14: 78 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch15: 79 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch16: 80 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch17: 81 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch18: 82 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch19: 83 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch20: 84 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch21: 85 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch22: 86 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch23: 87 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch24: 88 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch25: 89 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch26: 90 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch27: 91 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch28: 92 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch29: 93 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch30: 94 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit:
Ch31: 95 Coarsetime: 1100010101, Decode: 100001100 ==> Counter: 268, Hit: 1
```

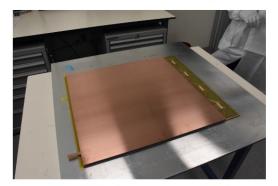


A new version of hardware is under development!


RPWELL Detector Prototype

(from Weizmann)

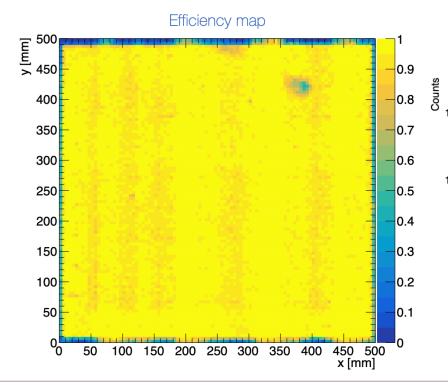

- ® Resistive Plate WELL is considered to be used as a sampling element in SDHCAL.
- § 50×50cm² RPWELL prototype has been built.

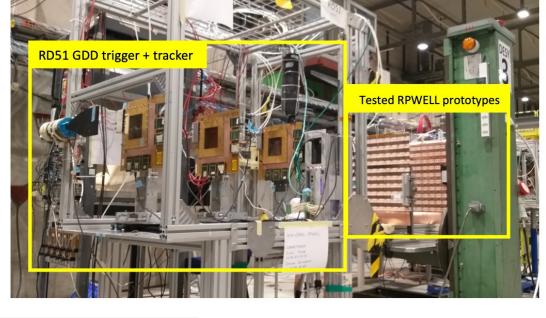

Strips readout (1mm pitch)

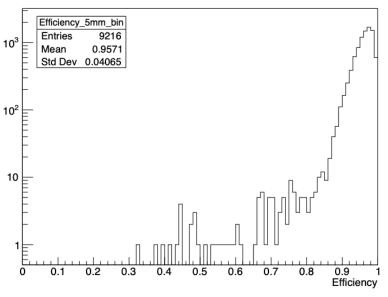

Resistive glass

Masking bottom of the THGEM

THGEM glued on the glass




Closing chamber



80-GeV Muon Testbeam

- Muon beam, E = 80GeV
- RD51 GDD 6cm2 trigger + tracker: 3
 SCs, 3 Micromegas
- DAQ: APV25 SRS

- Average efficiency ≈ 96%, std (spread) = 4%
- Low efficiency values (40 85%) are measured at the edges and at the low efficiency "blub" probably related to gluing point

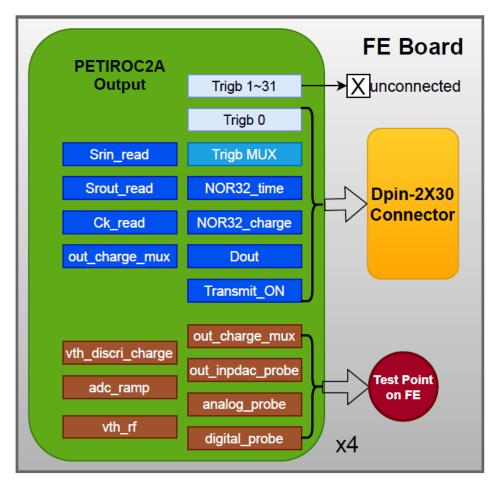
Summary

- A testbeam data analysis draft has been submitted to Jinst recently.
- § 1x1 m² Glass RPC has been built and tested at SJTU.
 - Its performance has been studied with different spacer configuration.
 - A RPC performance study paper has been accepted by Jinst.
- The timing electronics prototype have been designed and manufactured.
 - The DAQ system, including firmware and software, has been designed.
 - PETIROC chips can be successfully configured and readout.
 - Crosstalk exists in the injection tests.
 - A new version of hardware is under development.
- § 50x50cm² RPWELL detector prototype has been build by Weizmann, and its
 performance was tested in a 80-GeV muon beam.

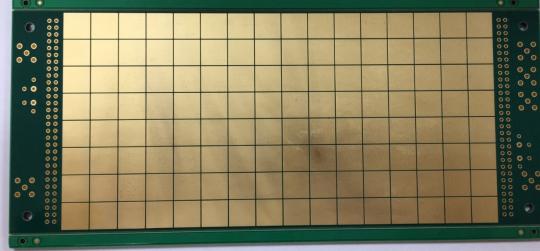
Thanks for your attention!

Backup Slides

Introduction of PETIROC chip


- Time measurement with 10bits TDC interpolating 40MHz coarse time
- © Charge measurement (Q>50fC) with 10bits DAC
- Voltage input amplifier, 2000hm matching
- High bandwidth preamp (GBWP> 1.2 GHz)
- PETIROC parameters:
 - One chip with 32-channels and mixed analog/digital
 - The 32chs input connected with PAD (detector unit)
 - One channel split into two parts, respectively for charge and time measurement
 - Internal DAC for each channel to adjust the amplitude of the input signal
 - Lower power consumption (~6mW/channel)
 - Jitter ~18 ps RMS on trigger output (4 photoelectrons injected)

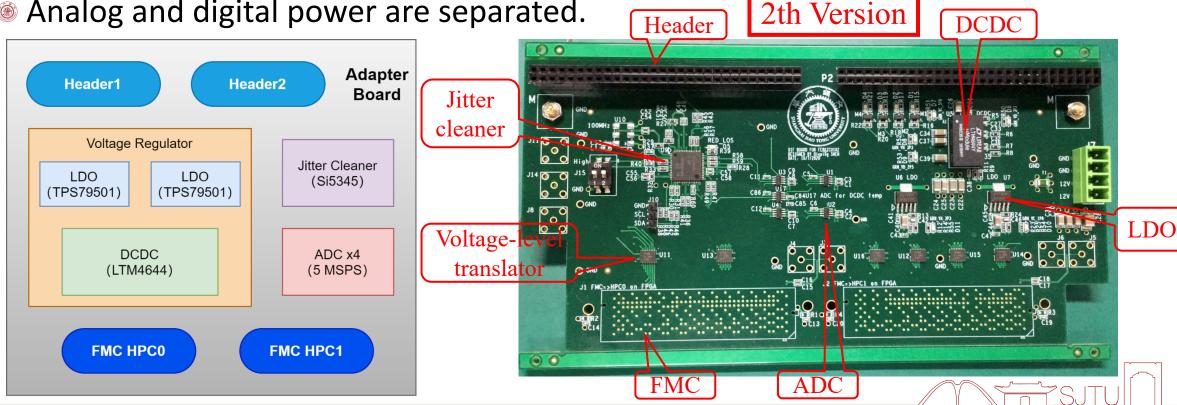
Sub-component Design and Testing


Front-End readout Board Design with pads and four petiroc2b

Block diagram of front-end electronics

Front

Back

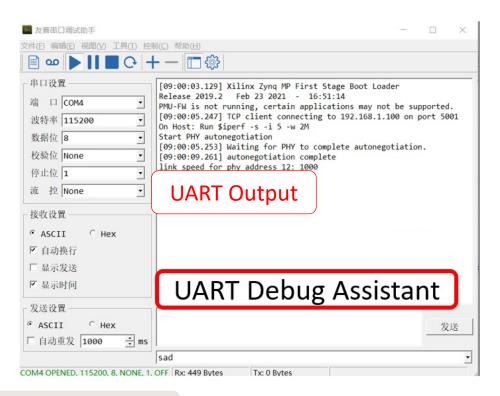


Sub-component Design and Testing

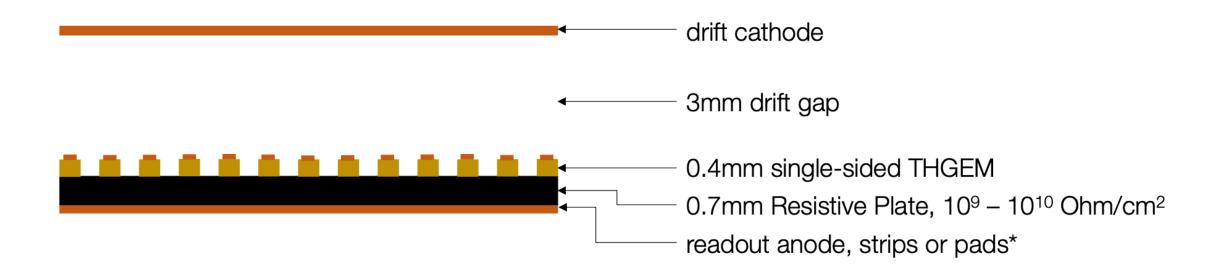
Detector Interface Card Design: mainly jitter cleaner and power system

DIF card will be in charge of the communication and data transfer with the FE electronics(two headers) and ZCU102(two FMCs). **More Details**

Analog and digital power are separated.



Embedded design based on FPGA -- UART


- The embedded design in ZCU102(PS side) mainly contains serial port communication(UART), ethernet communication(TCP/IP) and PETIROC configuration(Slow Control).
- Ware UART test in PS side:
 - Hardware only needs Processing System part on ZCU102.
 - Write the C/C++ code and run on the hardware platform.
 - Information is printed on the tool window through UART port.

```
#include <string.h>
#include "lwip/tcp.h"
#include "lwipopts.h"
                                          PS code
#include "xil_cache.h"
#include "xil printf.h"
static struct tcp_pcb*connected_pcb = NULL;
unsigned client_connected = 0;
//Static Global Function, blind for external file
uint tcp trans done = 0;
//u_char data[TX_SIZE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
u char data[TX SIZE] = "Hello World! Successfully Send Word From PS Client";
    struct tcp pcb *tpcb = connected pcb;
    //判断发送数据长度是否小于发送缓冲区剩余可用长度
    if (TX_SIZE < tcp_sndbuf(tpcb)) {</pre>
        //Write data for sending (but does not send it immediately).
        err = tcp_write(tpcb, data, TX_SIZE, 1);
           xil_printf("txperf: Error on tcp_write: %d\r\n", err);
           connected_pcb = NULL;
        //Find out what we can send and send it
        err = tcp_output(tpcb);
        if (err != ERR_OK) {
            xil_printf("txperf: Error on tcp_output: %d\r\n",err);
```


UART communication test

