X-ray searches of intermediate mass BHs

Roberto Soria (UCAS/NAOC)

Also thanks to: Alister Graham (Swinburne University) Albert Kong (National Tsing Hua University) Christian Motch (Strasbourg Observatory) Doug Swartz (NASA/MSFC) Jifeng Liu (NAOC)

1. Why searching for IMBHs

2. Previous unsuccessful X-ray searches

3. New criteria for more productive X-ray search

IMBHs predicted by theory

BHs with masses between ~1000—10^5 M_{sun}

Predicted in various environments

- Seeds of supermassive BHs
- Nuclei of dwarf galaxies
- Cores of globular clusters

Can we find them as X-ray sources?

Failed search for IMBHs in ULXs

Ultraluminous X-ray sources powered by IMBHs?

spiral SahSh 1000 sources of 100 cumulative number (Wang et al 2016) 3^E39 10^{40} 3^E40 10^{37} 10³⁹ 10^{41} 10^{38} Lx (0.3-8 keV)

Fashionable idea in early 2000s

Non-nuclear sources with Lx ~ 3^E39—3^E40 erg/s might contain IMBHs

Soft thermal component in those sources thought to be diskbb around an IMBH

This was proved to be wrong

ULXs = NSs or stellar-mass BHs accreting >> Eddington limit (plus a few background AGN)

Two environments

A: Nuclei of dwarf or bulgeless galaxies (Sd,Sm)

Predicted by M- σ relation (and similar scaling relations) IMBHs = probes of nuclear BH growth

B: Outskirts or halos of early-type galaxies

Cores of massive globular clusters Remnants of accreted satellite dwarfs IMBHs = probes of hierarchical galaxy assembly

Detection of a point-like X-ray source = signature of nuclear BH

Need arcsec resolution especially for starforming galaxies Chandra still the most suitable observatory

Test of proposed difference between IMBHs in E and S galaxies

Candidate IMBHs in spiral galaxies of the Virgo Cluster

Chandra Virgo Spirals Survey: snapshot of 75 Virgo spirals down to Lx ~ 5 x 10^{38} erg/s Graham, Soria & Davis (2019) -- Graham, Soria, et al (2021) -- Soria et al (2022)

Optical studies of a galaxy predict that it has a nuclear IMBH (M ~ 1E4—1E6 M_{sun})

We search for point-like X-ray emission from the nucleus

IMBH masses constrained by relations between L_X , $L_{H\alpha}$, L_{5GHz}

Candidate IMBHs in spiral galaxies of the Virgo Cluster

Chandra Virgo Spirals Survey: snapshot of 75 Virgo spirals down to Lx ~ 5 x 10^{38} erg/s Graham, Soria & Davis (2019) -- Graham, Soria, et al (2021) -- Soria et al (2022)

Optical studies of a galaxy predict that it has a nuclear IMBH (M ~ 1E4—1E6 M_{sun})

We search for point-like X-ray emission from the nucleus

IMBH masses constrained by relations between L_X , $L_{H\alpha}$, L_{5GHz}

Candidate nuclear IMBHs in the starburst galaxy NGC 7714

Massive spheroidals = fossil record of (many) minor mergers

Timescale for sinking to the main nucleus > Hubble time

No current star formation in old halos

Blue optical counterpart stands out

Not too close to the nuclear region of a major Elliptical

Reduce bg emission from diffuse hot gas

Selection criteria:

- In the halo of an E/SO galaxy

- L_x ~ 10^{41}—10^{43} erg/s
 Thermal (diskbb) spectrum
 kT ~ 0.2—0.4 keV (X-ray photon index > 3)
 Blue optical counterpart

No confusion with ULXs

No confusion with AGN

High/soft state of an IMBH

No other type of X-ray source with those properties

Test of selection criteria:

from the 4XMM-DR11 catalog (Tranin et al 2022, Webb et al 2022)

within 300 Mpc

Three (already-known) outstanding candidates

- HLX-1 in the Phoenix Cluster (d ~ 95 Mpc) (various studies by Farrell et al, Webb et al, Soria et al)
- 4XMM J161534.4+1927 (d ~ 130 Mpc)

(Albert Kong, in prep)

J2150-0551 (d ~ 250 Mpc)

(D Lin et al 2018, 2020)

HLX-1

Case B: IMBHs in old E/SO halos

L_(0.3-10 keV) varies between ~ 2e40 erg/s – 1e42 erg/s kT_{in} ~ 0.25 keV, L ~ T^4 M ~ 20,000 M_{sun} (Soria et al 2017)

Radio flaring seen during the hard to soft transition (Webb et al 2012) Optical counterpart with $M_V \sim -11 \text{ mag} + \text{narrow Ha emission}$ (Soria et al. 2010,2012,2013,2017, Wiersema et al. 2012, Farrell et al. 2014)

Case B: IMBHs in old E/SO halos

J2150-0551

TDE by an IMBH $L_{(0.3-10 \text{ keV})}$ peaked at ~ 1e43 erg/s then decayed $kT_{in} \sim 0.15 - 0.30 \text{ keV}$, L ~ T^4 M ~ 50,000 - 100,000 M_{sun} (Lin et al 2018)

Case B: IMBHs in old E/SO halos

$\begin{array}{l} L_{(0.3-10\ keV)} \text{ varies between } \sim 7e40\ erg/s - 6e42\ erg/s \\ \hline \textbf{4XMM J1615} \quad kT_{in} \sim 0.2\ keV \\ \hline \textbf{M} \sim a\ \textbf{few}\ 10^{4}\ \textbf{M}_{sun} \ \textbf{(A.K.H.\ Kong\ et\ al,\ in\ prep)} \end{array}$

Keck observations of the opt counterpart approved for 2022B

Very few IMBHs discovered in X-rays so far

Probably because:

- They are transient, with short duty cycle
- We have been looking in the wrong places
- We covered only 3% of the sky

IMBHs in the nuclei of bulgeless disk galaxies *Targets for Chandra*

IMBHs in the halo of E/SO galaxies

Suitable target for EP (+eROSITA)