

Two tales of X-ray QPEs

舒新文(Xinwen Shu) 安徽师范大学(Anhui Normal University)

in collaboration with L.M. Sun(AHNU), T. G. Wang(USTC), N. Jiang, W. J. Zhang et al.

X射线天文学60周年及中国X射线天文研究 研讨会, 2022/06/17

Outline

- What are Quasi-Periodic Eruptions (QPEs)?
- How the QPEs were discovered?
- The properties of QPEs and models

1. What are Quasi-Periodic Eruptions (QPEs)?

RX J1301.9+2747: A HIGHLY VARIABLE SEYFERT GALAXY WITH EXTREMELY SOFT X-RAY EMISSION

Luming Sun, Xinwen Shu, and Tinggui Wang

CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026, China; lmsun@mail.ustc.edu.cn, xwshu@mail.ustc.edu.cn, twang@ustc.edu.cn, keceived 2013 January 7; accepted 2013 March 27; published 2013 April 25

ABSTRACT

In this paper we present a temporal and spectral analysis of X-ray data from XMM-Newton and Chandra observation of the ultrasoft and variable Seyfert galaxy RX J1301.9+2747. In both observations the source clearly displays tw distinct states in the X-ray band: a long quiescent state and a short flare (or eruptive) state which differs in count rate by a factor of 5–7. The transition from the quiescent to the flare state occurs in 1–2 ks. We have observed that the quiescent state spectrum is unprecedentedly steep with a photon index $\Gamma \sim 7.1$, and the spectrum of the flare state flatter with $\Gamma \sim 4.4$. X-rays above 2 keV were not significantly detected in either state. In the quiescent state, the spectrum appears to be dominated by a blackbody component of temperature about $\sim 30-40$ eV, which is comparabe to the expected maximum effective temperature from the inner accretion disk. The quiescent state, however, require

- Short-lived X-ray flares (1-2 ks)
- Supersoft X-ray spectrum (0.2-2 keV)
- ➤ Luminosity 10⁴¹⁻⁴² erg/s
- > Periodic? ??

1. What are Quasi-Periodic Eruptions (QPEs)?

RX J1301.9+2747: A HIGHLY VARIABLE SEYFERT GALAXY WITH EXTREMELY SOFT X-RAY EMISSION

LUMING SUN, XINWEN SHU, AND TINGGUI WANG

CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026, China; lmsun@mail.ustc.edu.cn, xwshu@mail.ustc.edu.cn, twang@ustc.edu.cn, keceived 2013 January 7; accepted 2013 March 27; published 2013 April 25

XMM-Newton proposal:

- Short-lived X-ray flares (1-2 ks)
- Supersoft X-ray spectrum (0.2-2 keV)
- ➤ Luminosity 10⁴¹⁻⁴² erg/s
- Periodic? ??

1. What are Quasi-Periodic Eruptions (QPEs)?

RX J1301.9+2746:
Origin of the supersoft X-ray emission:
AGN accretion disk+corona flares?

Sun, <u>SXW</u> & Wang 2013, ApJ <u>SXW</u> et al. 2017, ApJ

	Low-mass AGNs with Extremely Soft X-Ray Emission								
Name	Morph.	z	$\log(M_{ m BH}) \ (M_{\odot})$	$\Gamma^{ m a}$	$\log(L_{0.5-2 \text{ keV}}^{\text{a}})$ (erg s ⁻¹)	$\log(L_{O\text{ [III]}})$ (erg s ⁻¹)	$\log(L_{1.4\mathrm{GHz}})$ (erg s ⁻¹)	$lpha_{ m ox}{}^{ m a}$	$\Delta lpha_{ m ox}{}^{ m b}$
RX J1301–2746	disk	0.024	5.9	7.1(4.4)	40.45 (41.8)	39.64	37.6	-2.04 (-1.50)	-0.99 [10.67] (-0.46) [4.9]
2XMM J1231+1106	disk	0.119	5	4.8	42.13 (42.5)	40.22		-1.89 (-1.68)	-0.77 [8.33] (-0.57) [6.18]
GSN 069		0.018	6.08	6.7	42.08	40.32		<-2	-0.89 [9.53]

SXW +2017 Lin, D+2017 Miniutti+2013

GSN 069

Miniutti+2013

GSN 069

Long-term decay of X-ray emission

(NASA/Swift ToO proposal, PI: Shu)

GSN 069 Abnormal C/N abundance ratio

Sheng, Wang, Ferland, SXW et al. 2021, supports TDE

GSN069: [C/N]~ -1.8

Normal QSOs: [C/N]~ -0.69, Nagao+2006

GSN 069

Long-term decay of X-ray emission Miniutti et al. 2019, Nature

GSN 069

Long-term decay of X-ray emission Miniutti et al. 2019, Nature

Quasi-Periodic Eruptions (QPEs)
Discovered serendipitously

GSN 069

RX J1301.9+2746

Miniutti et al. 2019, Nature

Sun, <u>SXW</u> & Wang 2013, ApJ Giustini et al. 2020, A&A

eROSITA QPE 2

Arcodia et al. 2021, Nature

See also the talk by A. Merloni

Possible QPEs in the TDE XMMSL1 J0249-0412

Chakraborty et al. 2021, ApJL

• QPE amplitude energy-dependence

Miniutti et al. 2019, Nature

• Two populations of QPEs? Alternating long/short and strong/weak

• Two populations of QPEs? Complex flares

• Two populations of QPEs? Complex flares

Host galaxies of QPEs

3. The models of QPEs

• More than the number of QPEs Possible origins:

- Radiation pressure instabilities in disk (Miniutti et al. 2019; Pan et al. 2022)
- ➤ Tidal disruption of a red giant, WD or He-star (King et al. 2020, 2022; Zhao et al. 2022; Wang et al. 2022)
- ➤ Interactions with a secondary orbiting object (Arcodia et al 2021; Xian et al. 2021)
- ➤ Interacting stellar extreme mass ratio inspiral, EMRI (Metzger et al. 2022)
- SMBH binary mini disk and self-lensing (Ingram et al. 2021)
- ➤ 2 body, 3 body, ...

Pan et al. 2022

Metzger et al. 2022

Wang et al. 2022

Ingram et al. 2021

Summary

QPEs are a new cosmic phenomenon

- Short-lived X-ray flares (1-2 ks)
- Supersoft X-ray spectrum (0.2-2 keV)
- ➤ Luminosity 10⁴¹⁻⁴² erg/s
- recurrence time: 13-30 ks (5-10 hours)
- What makes QPEs?
 - ► M_{BH}~10⁵-10⁶ Msun, type II AGN
 - ➤ No UV flares
 - ➤ Involving TDEs? Long-term LC
 - > Transient or repetitive?
 - ➤ Diversity or impostors? irregular X-ray flares

