

On the inclination dependence of QPO properties

2022-06-15, Beijing

The 60th Anniversary of X-Ray Astronomy: X-ray Astronomy in the Time-domain & Multi-messenger Era

Qingcui, Bu(卜庆翠)

Low frequency QPOs in black hole X-ray binaries

- Quasi-Periodic Oscillations (QPOs) are commonly observed in the X-ray flux
- QPOs are best studied in the Fourier domain
- LFQPOs, centroid frequency is < ~ 30 Hz in BHs

Fig. 2 Examples of type A, B and C QPOs from our GX 339-4 observations. The contribution of the Poisson noise was not subtracted. Adapted from [115].

Motta, et al. 2011

QPO properties and BH spectral states

The <u>nature</u> of the oscillations

- Geometrical the shape or size of **something** varies quasi-periodically
- Intrinsic fundamental property such as pressure or accretion rate oscillates in a stable geometry

LT precession of a hot inner flow or a small-scaled jet

Ingram et al.2009

Ma et al. 2021

4

Inclination dependence of type-C QPO properties

Motta et al.2016

The inclination dependence on the lag sign

There must be different dominant processes that modulate the observed flux at small radii and large radii

Assumption: The observed flux is modulated by both Doppler effect and solid angle effect

Formalism

 $\hat{o} = (\sin i \cos \Phi, \sin i \sin \Phi, \cos i),$ Observer $\hat{\boldsymbol{n}} = (\sin\beta\cos\beta(1+\cos\omega), \sin\beta\sin\omega, \cos^2\beta - \sin^2\beta\cos\omega).$ Instantaneous normal to the hot flow/jet $\cos\theta = \sin\beta\cos\beta\sin i\cos\Phi\left(1+\cos\omega\right)$ $+\sin\beta\sin\omega\sin\alpha\sin\beta\phi+\cos i(\cos^2\beta-\sin^2\beta\cos\omega).$ S is the surface area of the ring at R, D is the distance

 Γ is the PL index

 γ is the Doppler factor and c is the speed of light

Bu et al. 2022, In prep.

Simulated flux on different inclination angle

Simulated flux on different observer's azimuthal angle

The azimuthal angle has weak effect on the lag in low inclination system

The azimuthal angle has relatively stronger effect on high inclination system

Application to MAXI J1631-479

Bu et ¹*2*l. 2021

- The observed inclination dependence on QPO properties clearly suggest a geometric origin
- The observed flux is modulated by both Doppler effect and solid angle effect
- The lag is a little higher in high inclination system
- The rms is higher in high inclination system
- The solid angle effect become dominant in high inclination system

Conclusion