

Exploring the ever-changing X-ray Universe Einstein Probe National Astro. Observatories
 Chinese Academy of Sciences

On behalf of EP consortium

New high-energy transients & science questions

BH tidal disruption event

Demography of Black holes How matter falls onto BH? How jets form?

Quasi-periodic eruption

EMRI as GW sources?

High-redshift GRB When first stars formed? metal enrichment in early universe

Small numbers of known objects

Next generation X-ray monitors needed to see deeper/further High cadence EM counterpart of neutrino events How particles Accelerated?

art of Its

Supernova shock breakout Supernova physics & progenitors

EM counterpart of gravitational waves

What are EM counterparts? How compact objects merge?

Lobster-eye micro-pore optics (MPO) for X-ray focusing

ideal optics for X-ray wide-field monitors

- wide field of view
- better angular
 resolution (5 arcmin)
- higher sensitivity
- optimised in soft X-ray

first proposed by R. Angel (1979); studied by a number of groups for many years e.g. Wilkins et al. (1989) ; Fraser et al. (1992); Kaaret (1992), also at NAOC since 2010

Einstein Probe (EP) mission of CAS

EP science goal

X-ray all-sky monitoring to discover & characterise high-energy transients, and to monitor variability of X-ray sources, at sensitivity > 1 order of magnitude better than current ones

- 2012: EP proposal
- Adoption: 2017-12
- CDR: 2022-03
- Current in phase D (Flight Model)
- Planned launch: by the end of 2023
- Lifetime: 3 years (goal 5 yr)
- International collaboration: ESA & MPE (+CNES)

Instruments & SC

effective area: 300 cm² @1 keV (1 unit) spatial resolution: 30" (HPD on-axis)

sensitivity: tens times better than current

spatial resolution: ~ 5' (FWHM)

Wide-field X-ray Telescope (WXT)

- **Technology challenges**
- First large-FoV MPO telescope (432 plates)
- Large detector array (48 CMOS x 6 x 6 cm²)
- Use of CMOS as X-ray detectors in space
- Soft X-ray band

- development: CAS (SITP, NAO) + NNVT
- test/calibration: CAS & ESA
- WXT PI: X. Sun (SITP);
- Instr. Sci: Z. Ling (NAO); MA PI: C. Zhang (NAO)

WXT FoV & Grasp

Zhao D. et al. 2017

Simulated EP WXT sensitivity

Follow-up X-ray Telescope (FXT)

WXT status

WXT status

PSF for a compete WXT module

Credit: CAS/ESA/MPE

FXT Status

- X-ray camera QM built at CAS/IHEP (detector module from MPE)
- Joint test of STM of mirror module and camera QM at CAS/IHEP
- FM of mirror module (ESA/Media-Lario/MPE) delivered to CAS

14

Satellite status: QM AIT

Satellite QM built and tested at MicroSat/CAS (2021-09/10)

Credit: MicroSat/CAS

Mission profile

- Orbit: ~ 600 km (96min), incl. 29 deg
- Operation modes
 - Survey (WXT)
 - Autonomous X-ray follow-up (FXT)
 - Target of opportunity (FXT, WXT)
- Alert data rapid downlink
 - Beidou system (China)
 - VHF (CNES/France)
 - Transient alert information to be released immediately and publicly
- Target of opportunity command uplink
 - Normal (S-band): < 1 day
 - Time critical (Beidou): < 10 min

- EP Mission Centre @ NSSC/CAS ESA (GS telemetry support)
- EP Science Centre @ CAS NAOC+IHEP

EP all-sky survey mode

- anti-Sun pointings
- 3 snapshots per orbit, each
 ~20 min
- 3 orbits (~ 5 hr) cover half sky
- 1 day: ~ 45 snapshots

Systematic survey of soft X-ray transients and variability of X-ray sources at an unprecedented combination of high sensitivity and cadence

Discover otherwise quiescent black holes at almost all astrophysical mass scales and other compact objects by capturing their transient X-ray flares

Detect and localise the electromagnetic-wave sources of gravitational-wave events by synergy with gravitational-wave detectors

Various classes of high-E transients & variability

Simulated all-sky image & transients in 1-year

Estimated detection rates for selected classes

Type of transients	Detections per year	# transients per week
Tidal disruption event (TDE)	10s - 100	■ EP: >10
TDE with jet	several	Swift: 2.5
Supernova shock breakout	10 – 10s	MAXI: 0.8
Long GRB	10s	lenging to
High-z GRB (z > 6-8)	several mea	sure redshift !
Short GRB	10	
Low-luminosity GRB	10	
Magnetar	a few	
Stellar flares	a few 10 ³	Note: subject to large uncertainties
AGN monitored daily / weekly	tens / hundreds	

The fireball phase of a nova (YZ Reticuli)

- A short, bright and soft X-ray flash before the nova becomes visible in the optical
- 6-12 h for 1.0 Msun
- filled a gap in our understanding of how classical novae occur

EP Science Center

Proposal Tools

Proposal submission and review

Apply for EP Time	Back to homepage
Notice: please read the <u>Call for EP proposal</u> first.	
Create a new proposal I have created or submitted proposal, view my proposal list.	

Proposal Management

Home	Mission 👻	News 🔻	Data Center 👻	Team	Publications -	Proposal
			Back to Pro	posal List Status:	Draft View Proposal	Submit Proposal
Project Overv	iew Source List	Investigators	Peer Review			
	Proposal Title*:					
	Abstracts: (No more than	200 Words this int	formation will be potentially pure			
	Abstract . (No more man.	200 000103, 1113 111	ormation win be potentially pu	лю., <i>ј</i>		

Uplo	ad Science Case
	Please prepare your science case by modifying template.tex or template.docx. Upload the PDF document containing your scientific case. Click here to download template.tex Click here to download template.docx
	Select file Upload
	Save Project Overview Submit Proposal

Science Use Case Submission

Review Proposal List								
Total: 1	waitting Review: 0							
*You can submit and modify your review result before the expiration date. *A means a perfect proposal, and D indicates a completely unreasonable proposal; please use A for excellent proposals, and assign scores of B to proposals which are overall acceptable, though with room for improvement. *Please provide your evalution in relation to other EP proposals as much as possible. The novelty, the expected science return, and the timely publication of the respective programs will be highly valued by the observatory.								
* Please provide your evalution respective programs will be h	on in relation to other EP pro highly valued by the observat	oposals as much tory.	h as possible. The nove	lty, the expected	science return, and the t	imely publicatio	n of the	
* Please provide your evaluti respective programs will be h NO	on in relation to other EP pro highly valued by the observat Expiration(UTC+8)	oposals as much tory. PI-Name	n as possible. The nove	lty, the expected Status	science return, and the t	imely publication Proposal	n of the Peer Review	
* Please provide your evaluti respective programs will be h NO SQB-Test Season-0001	on in relation to other EP pro- nighly valued by the observa Expiration(UTC+8) 2022-05-29 00:00:00	pposals as much tory. PI-Name Yunfei XU	n as possible. The nove Request(hours) 0.2	lty, the expected Status Reviewed	science return, and the tr Technical Review View	imely publication Proposal View	n of the Peer Review Modify	

Proposal Review Management

Proposal Content Filling

WXT online simulator

Simple and quick

Data reduction software

Max arrow length = 28.9 pixel

- Define data products
- Build CALDB
- Develop and test software

12

10

0

0

HEASARC framework

10

12

D.5

Cas A (WXT 10 ks)

Transient database

Einstein Probe WXT Transients	EIP Einstein Probe WXT Transients	Einstein Probe WXT Transients	VISUALIZATION CREATE SOURCE ABOUT
	Source List Explorer	Source List Explorer	
	Choose Observation Type: two pointing observation	Choose Observation Type: two pointing observations per orbit 🛛 🗙 🗸	
	TDE SGRBs HL-LGRBs LL-LGRBs HZ-GRBs J2000d > 96.1901025 +50.2272813	TDE SGRBs HL-LGRBs HZ-GRBs SN SBO MAXI Known Sources	
The EP team has just performed a simulation for a one the satellite. The simulation mimics the equipment's o	Base image layer	Lists of Transient: SGRB (two pointing observations pe	r orbit) All 16 Rows
bursts (SGRBs), high-luminosity long gamma-ray burst ray bursts (HZ-GRBs), supernova shock breakout (SBO) the bright sources me	DSS colored V Color map: nativ.V Reverse	ID ≑ Source Name RA ≑ Dec ≑ Flux ≑ Absflux ≑ Cmosr 1 MJ000330-250202 0.88 -25.03 3.17e-9 erg-cm ⁻² -s ⁻¹ 8.92e-10erg-cm ⁻² -s ⁻¹ 2/	um 🔷 SNR 🗘 OBS Number 🗘 Show Details
The simulation data can be visualized and bro	Overlay layers		
The simulation data can be visualized and bro	HEALPix grid Tools Export view as PNG	Transient Image Light Curve Spectrum Spectrum First	Spectrum Second Spectrum Stack Original
Simulation Description Last Updated at 2020-08	0	Source ID 💠 Obs Id X 💠 Y 🗢 NH 💠 Alpha 💠 Beta 💠 Epeak 💠	Amplitude \$ Absflux \$ Cmosnum \$
Three pointings observation per orbit Two pointings observation		1 05010449001 765 2416 1.87e+20 -0.82 -2.06 814.94	4.85e-3 8.92e-10 24
Observation Details		Hide Details	
Observation mode: Pointing observation in WXT Sky Si		2 MJ010604-055655 16.52 -5.95 2.16e-9 erg cm ⁻² ·s ⁻¹ 3.62e-10erg cm ⁻² ·s ⁻¹ 1	21.17 1 Show Details
Observation Duration: 2022.11-2023.10 Number of observations: 16329		4 MJ012018-400151 20.08 -40.03 1.32e-9 erg-cm ⁻² -s ⁻¹ 1.29e-10erg-cm ⁻² -s ⁻¹ 8	14.95 1 Show Details
 Data Volume: 500GB Simulation time: 2.5 days under 55(64) cores 	0	8 MJ021602+714922 34.01 71.82 7.09e-9 erg.cm ⁻² .s ⁻¹ 6.14e-10erg.cm ⁻² .s ⁻¹ 1	28.70 6 Show Details
		10 MJ032433-032642 51.14 -3.45 6.61e-9 erg-cm ⁻² ·s ⁻¹ 3.84e-10erg-cm ⁻² ·s ⁻¹ 35	5 21.92 4 Show Details
Input Samples	ID 🔷 Source Name RA 🔷 De	11 MJ043247+245909 68.20 24.99 5.24e-9 erg-cm ⁻² ·s ⁻¹ 4.07e-10erg-cm ⁻² ·s ⁻¹ 33	7 16.13 1 Show Details
Known source: ROSAT Point Source: (1rxs + 2rxs) MAXI Source: a total of 407, the number of	3 MJ000240-320028 0.67 -32 16 MJ000914+384705 2.31 38	12 MJ044440+495403 71.17 49.90 1.57e-9 erg-cm ⁻² -s ⁻¹ 2.80e-10erg-cm ⁻² -s ⁻¹ 4 ⁻²	1 2.70 59 Show Details
arcmin) is 191 • Transient: TDE, SGRB, HL-LGRB, LL-LGRB, HZ-LGRB, SN-	18 MJ001059-363610 2.75 -36	14 MJ050139-692519 75.41 -69.42 1.23e-9 erg-cm ⁻² -s ⁻¹ 3.71e-11erg-cm ⁻² -s ⁻¹ 1	5.09 1 Show Details
Diffuse Radiation: ROSAT diffuse radiation (0.09-0.2 ke	66 MJ003051-022022 7.72 -2 66 MJ003110+535736 7.79 53	16 MJ054819+492100 87.08 49.35 1.45e-9 erg-cm ⁻² -s ⁻¹ 1.33e-10erg-cm ⁻² -s ⁻¹ 8	8.81 1 Show Details
Exposure time		21 MJ074316+142638 115.82 14.44 7.27e-9 erg.cm ⁻² .s ⁻¹ 1.14e-10erg.cm ⁻² .s ⁻¹ 33	7 11.09 20 Show Details

- X-ray sky is rich in various classes of transients and variables
- Future of monitoring dynamic X-ray sky is promising, enabled by Lobster-eye MPO technology
- Einstein Probe will discover/characterise a large number of faint X-ray transients, and monitor source variability
- Follow-up by ground- and space-based telescopes are essential
- Synergy with other Multi-Wavelength & Multi-Messenger facilities offers great science opportunities

http://ep.bao.ac.cn https://www.bilibili.com/video/BV1mf4y1b7YJ