Enhancing flavor tagging and R_b measurement at the CEPC

Libo Liao, Gang LI, Weimin Song, Shudong Wang, and Zhaoling Zhang 2022.5

Outline

>Introduction

Deep learning architectures & Datasets

- Evaluation metrics
- ➤Tagging
 - ➢ Jet tagging
 - Event tagging
- $> R_b \& R_c$ measurements >Conclusion

Introduction

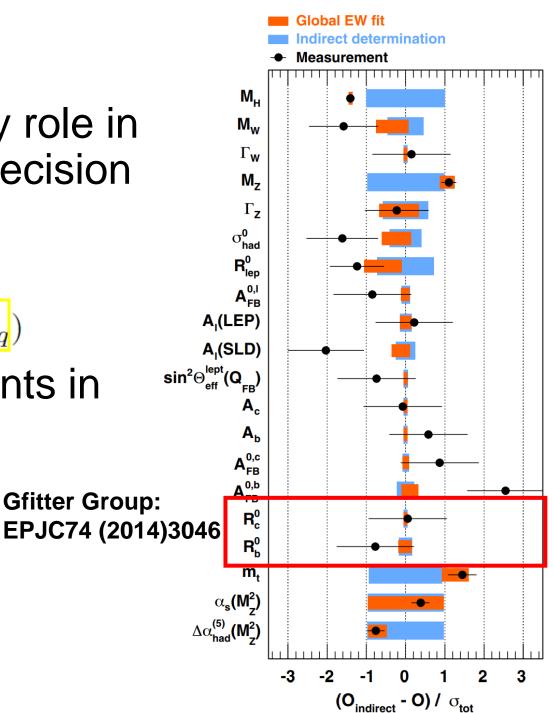
Relative decay width plays a key role in SM testing and experiment of precision measurement of Z boson

 $R_a = \Gamma_a / \Gamma_h$

$$\Gamma(Z \to q\bar{q}) = 12\Gamma_0 \left[g_{Aq}^2 R_{Aq} + g_{Vq}^2 R_{Vq}\right]$$

- Status of R_b and R_c measurements in experiment and theory
 - 1.3 σ deviations in R_b

	Experiment	Theory
R_b	0.21629 ± 0.00066	0.21578 ± 0.00011
R_c	0.1721 ± 0.0030	$0.17226^{+0.00009}_{-0.00008}$



CEPC Workshop

Introduction

➤ Key object: Jet

- Vertex finding
- Clustering
- Tagging
- Methods for tagging
 - Technique: Cut-based->TMVA->Deep Learning

CEPC baseline detector

CDR: 80% effi. & 90% purity in *b*-tagging 60% effi. & 60% purity in *c*-tagging

A new attempt: Event tagging

Deep learning architectures

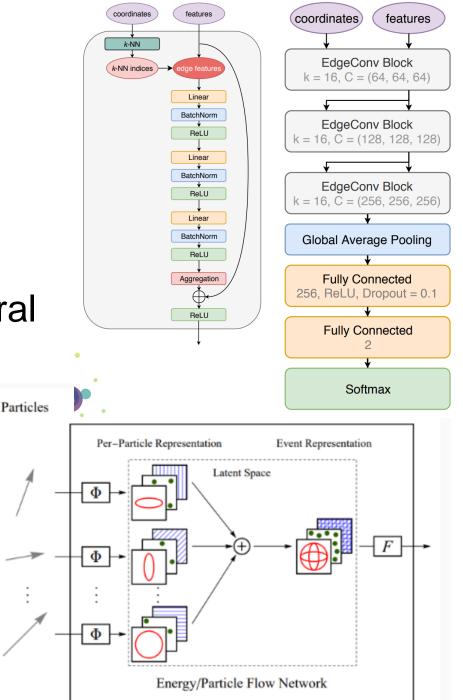
[Jet tagging via particle clouds]

ParticleNet

- Treating a jet as an unordered set of particles in space
- Using permutation-invariant graph neural networks

[Energy flow networks: deep sets for particle jets]

- Particle Flow Network (PFN)
 - Based on "point clouds"
 - As a cross check



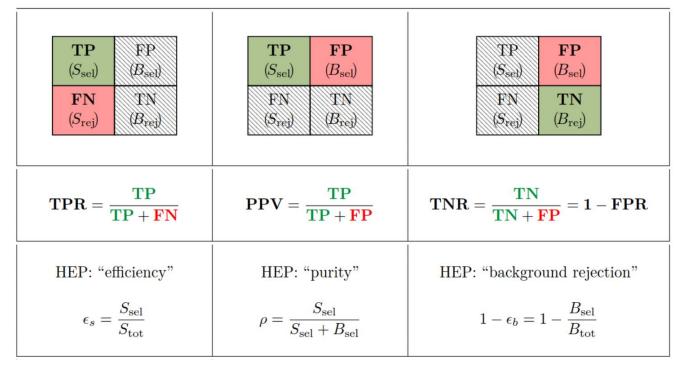
Datasets

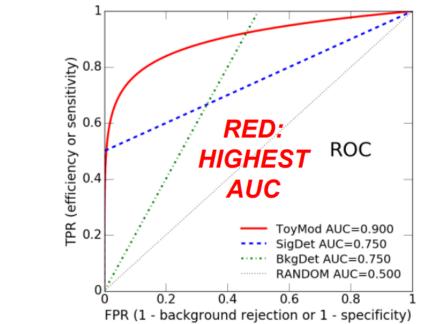
- ➢ Full simulation with CEPC baseline detector at Z-pole
- PID used as a feature by matching reconstruction and MC truth
- In flavor tagging
 - 900k jets for each flavor(b, c, o = uds);
 - Clustered by ee kt into 2 jets
- In event tagging(same samples are used)
 - $Z \rightarrow b\bar{b}, c\bar{c}, o\bar{o}, 450$ k events for each channel
 - The main background $Z \rightarrow \tau \overline{\tau}$ considered
 - No jet clustering (directly classify events into different category)
- \succ Train:validation:test = 7:1.5:1.5

Evaluation metrics

- ≻ Efficiency $\epsilon_s = TP/(TP+FN)$
- > Purity $\rho_s = TP/(TP+FP)$
- Accuracy = (TP+TN)/ALL
 ROC/AUC
- $\succ \epsilon_s \times \rho_s$: between 0 and 1
 - The higher, the better
 - Proportional to 1/error2

$$(\Delta R_i)^2 = \frac{R_i}{\mathcal{L}\sigma_h\epsilon_i\rho_i} \propto \frac{1}{\epsilon_i\rho_i},$$

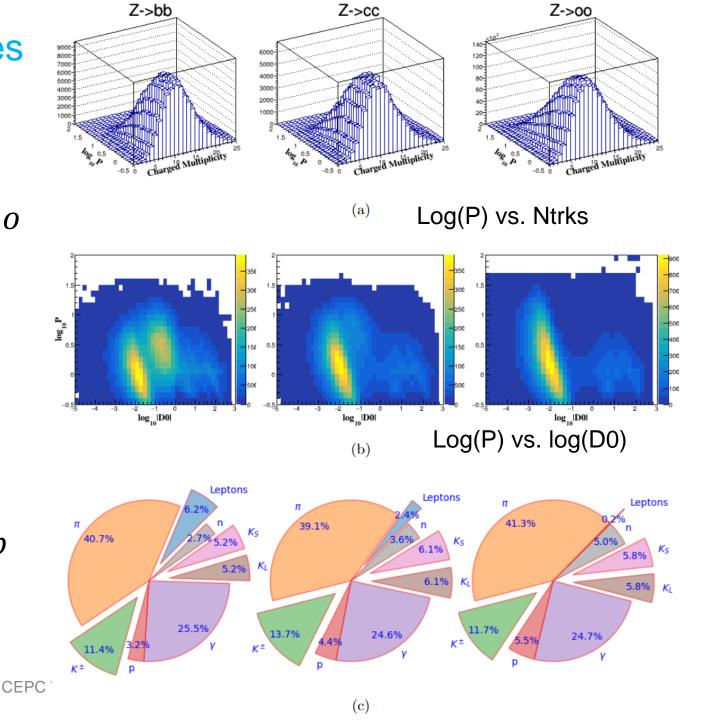




Jet tagging

Jet features

- (a) The multiplicity versus momenta of tracks
 - The number of tracks: b > c > o
- (b) The distribution of impact parameters versus momenta
 - Larger impact parameters and energetic tracks in *b*
- (c) The weighted fractions of different particle type
 - Far more energetic leptons in b
 - Slightly more energetic *K* in *c*

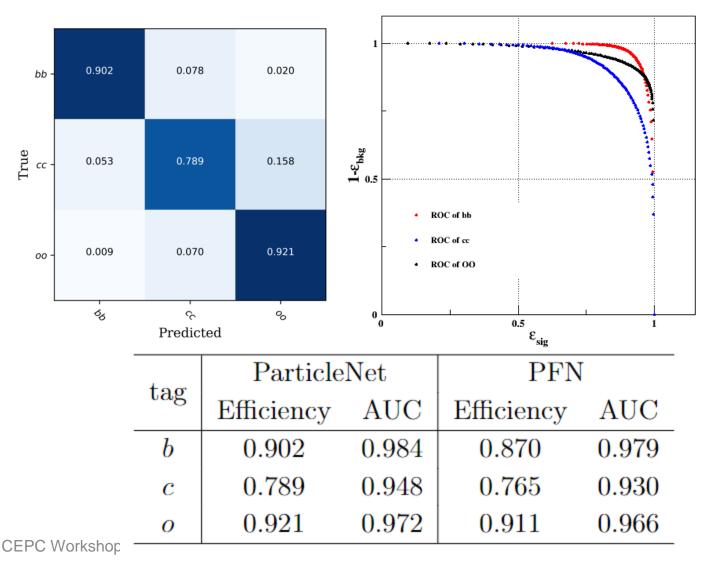


Jet tagging

Fan Yang: Flavor Tagging Using Machine Learning Algorithms

Algorithm	ParticleNet	PFN	DNN	BDT	GBDT	gcforest	XGBoost
Accuracy	0.872	0.850	0.788	0.776	0.794	0.785	0.801

- At least 9% improvement in ParticleNet at global accuracy
- The performance of *b*-tagging and *o*-tagging are much better than *c*-tagging
- ParticleNet is better than the PFN
 - Consistent with the study by Qu, et al



Physics impacts of jet tagging

- Several working points, LCFIPlus & XGBoost as reference
 - ParticleNet & PFN are better than the other two, especially in c
- Improved statistical uncertainty
 - roughly 30% in counting c jets(compare to CDR)

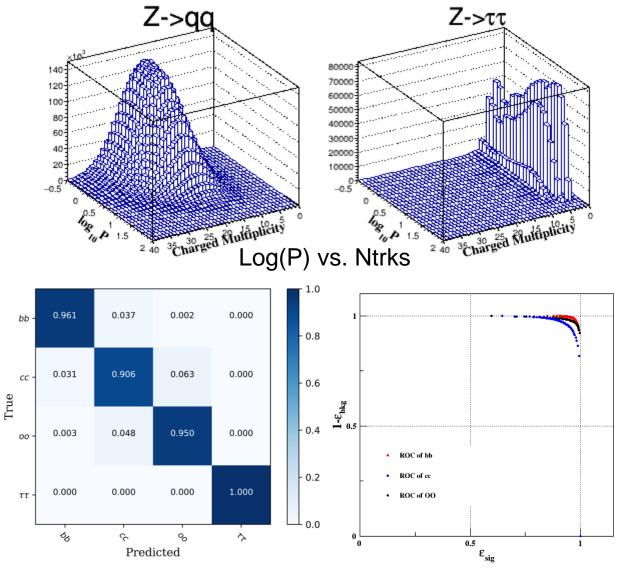
tag	$\epsilon_S(\%)$	$\epsilon \times \rho$				
		LCFIPlus	XGBoost	ParticleNet	PFN	
b	80	-	0.747	0.780	0.763	
	90	0.72	0.713	0.810	0.752	
с	60	0.36	-	0.548	0.485	
	70	-	-	0.589	0.497	
	80	-	0.345	0.584	0.467	
	90	-	0.292	0.516	0.402	

Applied in R_q measurement

Event tagging

- The multiplicity versus momenta of tracks
 - Few tracks and more energetic in $\tau \overline{\tau}$
 - Easy to discriminate $q\bar{q} \& \tau\bar{\tau}$
 - Approximate to diagonal matrix
- Good performance

tag	Particle	Net	PFN		
	Efficiency	AUC	Efficiency	AUC	
b	0.961	0.997	0.930	0.993	
c	0.905	0.989	0.832	0.976	
0	0.950	0.995	0.945	0.992	



Next: R_q measurement with two methods

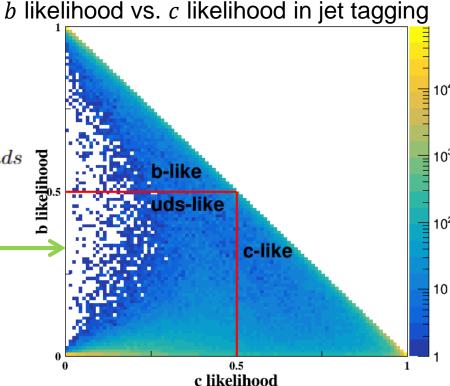
$R_b \& R_c$ measurement

 $f_s = \varepsilon_b R_b + \varepsilon_c R_c + \varepsilon_{uds} R_{uds}$

- > Double tagging: $f_d = C_b R_b \varepsilon_b^2 + C_c R_c \varepsilon_c^2 + C_{uds} R_{uds} \varepsilon_{uds}^2$
 - Neglect the correlation of jets
 - Choose the working point
 - Solved 6 equations by the least square method

Confusion matrix:

- To solve the right equations
- Calculate $R_q = \frac{N_q}{\Sigma_i N_i}$



$$\begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = \begin{pmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{32} & \epsilon_{33} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix}$$

R_b & R_c measurement

	σ_{R_b}/R_b	σ_{R_c}/R_c	σ_{R_o}/R_o
LEP/SLD	3051.46	17431.73	-
Template fit	5.38	13.37	3.41
Double tag	6.06	6.88	-
Confusion matrix	6.35	8.32	-

- References
 - LEP/SLD:
 - a) Limited by statistics & flavor tagging
 - Template fit:
 - a) Much larger statistics & flavor tagging in CEPC CDR
- results
 - Double tag & Confusion matrix:
 - a) Statistic of $10^{11} Z$ bosons, same as template fit
 - b) Comparable in R_b
 - c) Improved more than 60% in R_c measurement

R_b & R_c measurement

- Systematic uncertainty
 - Dominant in future colliders
 - Efficiency
 - a) Arise by MC models
 - b) Reduced by orders of magnitudes, since much improved knowledge on the production and decay of *B* & *D* mesons
 - Correlation between jets
 - a) Reduced by improved tagging efficiency
 - b) Cancel in confusion matrix since there is no jet clustering

Conclusion

- Two novel deep learning methods are used to enhance the performance of jet flavor tagging
 - Significant improvement in jet tagging, especially for *c* tagging
 - Maximize the usage of information in a jet/event
- \succ R_q measurement is taken to demonstrate the physics impacts
 - Improved more than 60% in R_c measurement
 - Cancel an important systematic uncertainty by confusion matrix method

Thank you!

Backup

Δ

$$N_{bo} = L\sigma_h R_b \epsilon \rho$$

$$R_b = \frac{N_{bo}}{L\sigma_h \epsilon \rho}$$

$$\Delta R_b = \frac{\sqrt{N_{bo}}}{L\sigma_h \epsilon \rho}$$

$$R_b = \frac{\sqrt{L\sigma_h R_b \epsilon \rho}}{L\sigma_h \epsilon \rho} = \sqrt{R_b/(L\sigma_h \epsilon \rho)}$$

$$(\Delta R_b)^2 = \frac{R_b}{L\sigma_h \epsilon \rho} \propto \frac{1}{\epsilon \rho}$$