Marlin Tracking Software in CEPCSW

Chengdong FU for CEPC Software Group

IHEP, CAS

Joint Workshop of the CEPC Physics, Software and New Detector Concept May 23-25, 2022

Outline

Introduction

- Tracking software
 - Tracking tool
 - Tracking option
- Performance study
 - Particle gun
 - $\bullet\,\mathrm{H}{\rightarrow}\mu\mu$
 - Vertex detector
 - Non-uniform field
 - Background

Summary

Introduction

History: Tracking for CDR in Marlin

From ILCSoft

• Use different tracking for different trackers, and then merge

Tracking in CEPCSW

CEPCSW

- Core software, Applications, External libraries
- EDM4hep and DD4hep are directly relative with tracking software development.
- Realize EDM4hep input and output
- A complete tracking chain same as CDR (Marlin)

GaudiAlgorithm

- initialize() to prepare parameters and services/tools
- execute() to deal with input data (after digitization, edm4hep::TrackerHit)
 - ✓ Create auxiliary objects
 - $\checkmark~{\rm Track}~{\rm finding} \rightarrow {\rm track}~{\rm candidates}$
 - ✓ Track fitting → edm4hep::Track (through call fitter interface)
- finalize() to delete auxiliary objects

Propose of Tracking Chain

- Service to call the API of fitter according to option
- Possible to combine differently from track finding to fitting
 - For middle tracking, low CPU time
 - For final tracking, high performance
- Comparison on same detector design will be performed

Migration/Implementation

extra merge not friendly

• ConformalTracking migrated into CEPCSW, work well for single particle, more ongoing

• Another implement way is in considering, to test coversion cost

Create a GaudiAlgorithm to covert data model and call

✓ EDM4hep→LCIO→call event loop function→LCIO→EDM4hep

- **Key4hep** (best) in plan
 - CallingAlg to call prepared API
 - event model support with same code is important

Frank Gaede, ECFA

- ILD also consider
- need to preserve existing pattern recognition tools in transition to Key4hep
 - initially via MarlinWrapper later via direct ports to Key4hep/EDM4hep

Migrated MarlinTrk

- Create service to convert DD4hep extension to Gear as KalTest geometry input
- Create service to create MarlinKalTest object, called by tracking algorithm
- Switch data model to EDM4hep
- After migration
 - Fully identical on same digitized input
 - consistent on different input (different random)
 - Upgrade to DD4hep surface (DDKalTest) is in plan

Repeat complete CDR tracking chain in CEPCSW, therefore tracking study for the CDR baseline detector is possible to perform in CEPCSW now.

Option for the 4th Conceptual Detector

Track System

- Status: workable for optional detector concepts
- Vertex detector (VXD): 6 pixel layers
 - $\sigma_{\text{rphi},z}$ =2.8µm, 6µm, 4µm, 4µm, 4µm, 4µm
- Silicon inside/internal DC tracker (SIT): 4 or 3 pixel layers
 - σ_{rphi} =7.2µm, σ_{z} =86µm
- Silicon outside/external DC tracker (SOT/SET): 1 pixel layer
 - $\sigma_{rphi} = 7.2 \mu m$, $\sigma_z = 86 \mu m$
- Endcap tracker (EIT&EOT/FTD): 2 + 3 pixel layers
 - σ_{x,y}=3μm, 3μm, 7.2μm, 7.2μm, 7.2μm
- Drift chamber (DC): 18mm or 10 mm cell size
 - σ_{rphi} =100 μ m, σ_z =2.828mm

Hits Number in Fit

Barel: ~10 silicon hits used in fit; **Endcap:** 10 or less, determined by vertex cover range

Efficiency VS Time Cost

20 particle in each event

- p∈[2,50] GeV/c
- $\theta \in [40^{\circ}, 140^{\circ}]$
- Independent: $(e^+,e^-,\mu^+,\mu^-,\pi^+,\pi^-,K^+,K^-,p^+,p^-)\times 2$
- Vertex: (beam parameter @Higgs)
 - $\checkmark \sigma x = 15 \mu m$
 - ✓ σy=36nm
 - $\checkmark \sigma z=3.9$ mm
- Tracking efficiency

40

- Match: >50% of hits shares between MC truth and tracks
- Improve through adjust pattern recognition

40

Resolution of Higgs Mass $(H \rightarrow \mu \mu)$

Effect of Inner Radius of Vertex

CRD beam pipe

• Inner radius: $14 \text{mm} \rightarrow \text{Vertex}$: 16 mm

Newest beam pipe:

● Inner radius: 10mm → Vertex: 12mm (keep layer5/6, and move layer3/4 2mm)

Non-uniform Field Test on MarlinTrk

Include non-uniform field by map files through GenericBFieldMapBrBz in simulation

Keep to use field value at (0,0,0) in reconstruction

- Resolution changes very small: $(\sigma_{Pt} \sigma_{Pt,non}) / \sigma_{Pt} 4\% @100 \text{GeV}$
- momentum departure from MC truth, to correct through average past field

Background

As known, more close to beam line, more background from beam

According to Haoyu's talk on 2021 Workshop

Name	Position	Hit/cm ² /BX	Hit/cm ² /s
VTX	15 mm	~2.3	~3.33e7
SIT	15 cm	~0.01	~14507
ТРС	50 cm	~0.005	~7253
Ecal	200 cm	~1e-4	~145
Hcal	220 cm	~2e-6	~2.9

- Assume $\sim e^{-r/c}$
- For VTX ($r_{1st layer} = 12mm$), Hit/cm²/BX
 - ✓ 2.6, 2.4, 1.0, 0.96, 0.41, 0.38 as baseline
 - $\checkmark \times 10$ for all layers
 - $\checkmark \times 100$ for all layers
 - \checkmark \times 10 for 1st/2nd layers
 - \checkmark \times 100 for 1st/2nd layers
- Background mixing (simply) with single muon (θ =85°)
 - Random hits at silicon sensors
 - Optional merge for distance less than 50µm
 - \checkmark Center of merged hits as new position

More reliable estimation needs beam simulation to generate beam background

Effect of Background

Background cause fake tracks, extremely, fake tracks will even exceed real tracks much more.

Increase CPU time

- More hits, more track finding time
- More fake tracks, more track fitting time

If serveral Hits/cm²/BX, background's effect will be small

Summary

- Tracking algorithm and Kalman filter tool have been migrated from Marlin into CEPCSW, work well for the CDR detector.
- Tracking option from digitization to track finding to track fitting has been defined.
- Performance study shows reasonable tracking efficiency, resolution, CPU time.
- But tracking parameter set still has improving capacity. Genrally, tracking efficiency is competition of CPU time.
- Non-uniform field and background are considered in preliminary, showing small effect on resolution. Further study is still needed.

Thanks very much for your attention!