Reconstruction Algorithm for Long Crystal Bar ECAL

Song Weizheng on behalf of CEPC ECAL software group 2nd Joint Workshop of the CEPC Physics, Software and New Detector Concept May 23-25, 2022

- Introduction
- Simulation and digitization
- Reconstruction algorithm and performance check
- Summary

Introduction: PFA Calorimeter

- High precision Higgs / Z factory:
 - Heavy bosons separation and precise Higgs measurements require excellent jet energy resolution 3~4%.
 - Fine γ / π^0 reconstruction for flavor physics.
- Particle Flow Approach (PFA):
 - Identification of energy deposits from each individual particle.

$$-\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{EM}^2 + \sigma_{Had}^2 + \sigma_{Confusion}^2}$$

Imaging calorimeter + Topological analysis

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b\bar{b}/c\bar{c}/gg$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\begin{aligned} \sigma_{r\phi} &= \\ 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m}) \end{aligned}$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

Long Crystal Bar ECAL

- Long crystal bar ECAL:
 - Homogeneous structure \rightarrow Optimal energy resolution $\frac{\sim 3\%}{\sqrt{F}} \oplus \sim 1\%$
 - Significant reduction of number readout channels
 - Larger Moliere radius $R_M \rightarrow$ increase probability of shower overlap
 - Smaller $\lambda_I / X_0 \rightarrow$ increase probability of hadronic shower in ECAL
- Key issues:
 - Ambiguity caused by matching of horizontal and vertical bars.
 - Identification of energy deposits from each individual particle.

Reconstruction is big challenge!

Design Concept of Long Crystal Bar ECAL

A BGO crystal barrel ECAL

Crystal Bar:

- BGO: $X_0 = 1.12cm, R_M = 2.23cm$
- Size: $1 \times 1 \times 40 \sim 60 \ cm^3$
- Time measurements at both ends readout for position along bar
- Basic Detection Unit Super Cell:
 - 2 layers of perpendicularly crossing bars
 - Size: $\sim 40 \times \sim 60 \times 2 \ cm^3$

Detector:

- R = 1.9m, L = 6.6m, H = 28cm
- 8 same trapezoidal staves
- Avoid gaps point to IP

DD4Hep is used for geometry construction Focusing on software performance, ignoring dead area, supporting and cooling mechanics, etc

Simulation and Digitization

- Simulation is performed using GEANT4:
 - Electromagnetic interactions
 - Hadronic interactions
- Digitization for one long crystal bar:
 - Contribution of each G4step i

$$Q_{\pm}^{i} = E_0 \cdot e^{-\frac{L/2 \pm z_i}{L_{Atten}}}, \qquad T_{\pm}^{i} = T_0 + Gaus(z_{\pm}^{i}/\nu, \sigma_T)$$

> Readout at both ends: Q_{\pm} and T_{\pm}

$$Q_{\pm} = \sum_{step} Q_{\pm}^i$$
, $T_{\pm} = T_{\pm}^k \mid \left(\sum_{i=1}^k Q_{\pm}^i > thres\right)$

Simplified Conditions: $L_{Atten} = \infty$

$$\{Q_{-}, T_{-}\} = \{Q_{+}, T_{+}\}$$

Design of Reconstruction Software

Design the reconstruction software as a proto-PFA:

- Follow the idea of PandoraSDK: flexible, reusable, modular. (*Many thanks!*)
- Develop in CEPCSW: based on the common HEP software stack Key4HEP.

Reconstruction Algorithm

- Cluster Finding:
 - Neighbor clustering
- Cluster/Particle Recognition:
 - Local maximum and seed candidate $E_i > E_{th}^{seed}$
 - Hough transformation for EM showers
 - Match of extrapolated charged track and cluster
- Energy Splitting:
 - Efficient ghost hit removal
 - Correctly assigned the energy deposits to correct particle


```
Energy deposits in ECAL of e^+e^- \rightarrow ZH \rightarrow vvgg
```

Cluster Finding

- Cluster:
 - a group of adjacent fired crystals whose energy is greater than threshold
- Each crystal bar has 3-dimentional labels
- Event data model (EDM):
 - ✓ Single layer (1D)
 - ✓ Bi-layer (2D)
 - ✓ Multi-layer (3D)
- Algorithm:
 - if objects are neighbor in pairs, they are merged

Performance Check of Cluster Finding

Single Photon: 200 events

$$E_{\gamma} = 10 GeV \quad \phi_{\gamma} = 0^{\circ} \quad \theta_{\gamma} = 90^{\circ}$$

- Much more than 1 cluster/event in most cases. 200 clusters $E_{\gamma} \sim 10 GeV$ and ×2.5 clusters with small energy
- "Isolated hits" is planned to be absorbed into clusters nearby

Jet: 240GeV $e^+e^- \rightarrow ZH \rightarrow vvgg$

- There are lots of "isolated hits" same as photon
- Typical lateral development of jet event will bring challenge for cluster recognition and energy splitting

Impact of Threshold on Energy Resolution

- Impact of thresholds on energy resolution is studied using single photon simulation samples with different energies.
- Comparison of all fired crystals (single photon + isolated hits, Digitization) and energetic cluster (single photon) shows slightly differences in stochastic term with threshold<1MeV.

 $\oplus b$ E

1

2

5

Threshold / MeV

constant term

3

Cluster / Particle Recognition — Local Maximum

- Larger R_M enhance probability of lateral overlap of showers.
- In each layer / 1D : local maximum
 - Real: core of energy deposition → real cluster
- Cluster recognition → Energy "Core" recognition
 - Reduce the negative effects due to wider longitudinal and lateral developments of clusters.

Principle of Hough Transformation

- A feature extraction method for detecting simple shapes (e.g. lines) in an image.
- For straight lines:

 $\rho = x \cos \alpha + y \sin \alpha$

- Each point (x, y) in image space is transformed to a curve in Hough space.
- If several points (x_i, y_i) are collinear, their curves intersect at a point (α, ρ) in Hough space.
- α and ρ are parameters of the straight line that pass through these points (x, y)

Crystal Granularity Hough Transformation

- Each crystal in image space is transformed to a band in Hough space instead of a curve
- Cluster recognition in horizontal and vertical projection spaces respectively
- Each point/peak (overlap region of band) in Hough space is chosen as a cluster candidate

Performance Check of EM Shower Recognition

 Further optimization improve performance: number of continuous local maxima, usage of common points,

Efficiency and Fake Rate of Single Photon

- Low energy or small $|\cos\theta|$: One & only one cluster
- High energy and large $|\cos\theta|$: >1 clusters
 - -Fluctuations of energy deposits increase fake shower

Meet the requirement of EM showers recognition in jet reconstruction in most cases

Charged Hadron

Match of Extrapolated Charged Track and Cluster

300

250 L

1900

1950

- track with the energy "core" of cluster in ECAL.
- A χ^2 is defined to describe the consistency between the trajectory and local maxima.
- Hadronic shower "generation point" recognition is crucial to obtain an accuracy result.

$$\chi^2/n_{dof} = \sum_{i=1}^n \left[\frac{\mathbf{y_i} - \mathbf{g}(\mathbf{x_i})}{\sigma_i}\right]^2 / n$$
18

x/mm

chi2bydof

2000 2050 2100 2150 2200

Local maxima and

Trajectory projection

Ambiguity Removal

Update the performance with cluster recognition:

- Solve the ghost hit problem with energy-time χ^2 matching [<u>Ref</u>].
- Particle gun events simulation for two 5GeV photons in parallel.
- Scan the distance between photons, check the successful reconstruction efficiency and energy resolution.

Distance / mm

Performance Check of Energy Splitting

Gamma / gamma Separation:

- Particle gun event of two 5GeV photons.
- Scan the angle(distance) between two photons, check the successful reconstruction efficiency and energy / position resolution.

Separation efficiency

Summary

- Long crystal bar is a promising solution for ECAL, it is challenging for hardware and software to obtain a maximal exploitation of precise measurements.
- Simulation and digitization of barrel part of long bar crystal ECAL have been simplified for reconstruction algorithm without electronics, supporting, etc.
- Software development of reconstruction algorithms is in processing, basic functions of cluster finding, particle recognition and energy splitting has been implemented.
- Performance checks provide positive feedback of EM showers and MIPs, continue to improve for utmost precision.
- Next to do:
- Emphasis on clusters separation of charged and neutral particles in ECAL.
- Simulation and reconstruction of endcap ECAL and HCAL for jet energy measurement.

Thank you!