Overview of the CEPC Project

Haijun Yang (for the CEPC working group)

http://cepc.ihep.ac.cn/

- > Introduction of the CEPC
 - Goals and Plan
 - Roadmap & Schedule
 - International Efforts
 - Collaboration with Industrial
- CEPC Project Development
 - Accelerator R&D
 - Physics Program
 - New Detector Concept and R&D
- Summary and Prospect

Circular Electron Positron Collider (CEPC)

- The CEPC aims to start operation in 2030's, as a Higgs (Z/W) factory in China.
- To run at $\sqrt{s} \sim 240$ GeV, above the ZH production threshold for ~1M Higgs; at the Z pole for ~Tera Z, at the W⁺W⁻ pair, and possible $t\bar{t}$ pair production threshold.
- Higgs, EW, flavor physics & QCD, BSM physics (eg. dark matter, EW phase transition, SUSY, LLP,)
- **D** Possible Super *pp* Collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

http://cepc.ihep.ac.cn/

CEPC Major Milestones

The CEPC Study Group

August 2018

Editorial Team: 43 people / 22 institutions/ 5 countries

4

The CEPC Study Group

October 2018

CEPC Physics Program (CDR @ 2018)

The CEPC accelerator design improvement will enable larger collected samples

CEPC Roadmap and Schedule (ideal)

- > 2013-2025: Key technology R&D, from CDR to TDR, Site selection, Intl. Collab. etc.
- > Ideal case: Approval in the 15th Five-Year Plan, and start construction (~8 years)

CEPC Project Timeline

Nb₂Sn+HTS or HTS

• 15 T SC dipole magnet & HTS cable R&D

CEPC Financial Model

Funding Sources	Financial Model #1 (RMB)	Financial Model #2 (RMB)
Central Government	30B	6-10B
Local Government	Land, Infrastructure	25-18B Land, Infrastructure
International Partners	1-5B	1-5B
Companies & Donations	0-3B	0-3B
Total Budget	36B	36B

In Oct., 2021: Institute of Science and Technology Strategic Consulting, CAS is carrying out an independent assessment of Social Cost Benefit Analysis for the CEPC project, the report will be available in August, 2022.

International Efforts

- The 7th annual IAC meeting was held on Nov 1-5, 2021.
- International Accelerator Review Committee (IARC), and International Detector R&D Review Committee (IDRDRC) started operating in 2019.
- Currently the CEPC study group consists of ~1/3 international members. By year 2025-26, two international experiment collaborations should be formed.
- International collaborating R&D through different channels, including CALICE, LCTPC, RD*, ...
- The R&D research are supported by MOST, NSFC, CAS, institutes, local government, ...

International workshops (with emphasis on CEPC):

 In China: Beijing (2017-2019), Shanghai (2020.10), Nanjing (2021.11 online, 2022.10)

Annual HKUST-IAS HEP program (since 2015)

- In Europe: Rome (2018.05), Oxford (2019.04), Marseille (?)
- In USA: Chicago (2019.09), DC (2020.04 / online)

High Energy Physics

January 14-21, 2021

CEPC Collaboration with Industry (CIPC)

CEPC 650MHz Klystron at Kunshan Co.

CIPC was established in Nov. 2017, there are 70+ companies join the CIPC so far.

CERN HL-LHC CCT SC magnet

CEPC Detector SC coil winding tools at KEYE Company (Diameter ~7m)

 1) Superconduting materials (for cavity and for magnets)
 2) Superconductiong cavities
 3) Cryomodules
 4) Cryogenics

- 5) Klystrons
- 6) Magnet technology
- 7)Vacuum technologies
- 8) Mechanical technologies

CEPC SC QD0 coil winding at KEYE Co.

CEPC long magnet measurement coil

- 9)Electronics 10) SRF
- 11) Power sources
- 12) Civil engineering
- 13) Precise machinery
- •••••

More than 40 companies joined in first phase of CIPC, and 70 companies now.

CEPC Accelerator Design Improvement & TDR

800

- 100 km double ring design (30 MW SR power, upgradable to 50MW).
- Switchable between H & Z, W modes without hardware change (magnet switch).
- New baseline for Linac (C-band, 20GeV).

CEPC Accelerator TDR Design Improvement

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	4	5.5	
Circumference (km)		100			
Synchrotron radiation	1.73	0.34	0.	036	
Crossing angle at IP (mrad)		16 5 v	2		
Divringhi angle	2.49	7.0	1 2	2.0	
Particles (hunch N (10 ¹⁰)	3.40	12.0	2	3.0	
Particles / other $N_{e}(10^{\circ})$	242	12.0	12000 (10%	
	242	1324	12000 (10% gap)	
Bunch spacing (ns)	080	210		25	
Beam current (mA)	17.4	87.9	40	51.0	
Synch. radiation power (MW)	30	30	1	6.5	
Bending radius (km)		10.7			
Momentum compaction (10 ⁻⁵)		1.11	-		
β function at IP $\beta_x * / \beta_y * (m)$	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance x/y (nm)	1.21/0.0024	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x/\sigma_y(\mu m)$	20.9/0.06	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_y	0.018/0.109	0.013/0.123	0.004/0.06	0.004/0.079	
RF voltage $V_{RF}(GV)$	2.17	0.47	0	.10	
RF frequency f_{RF} (MHz)		650			
Harmonic number		216810	5		
Natural bunch length σ_{z} (mm)	2.72	2,98	- ci	<u>n</u>	
Bunch length σ_{z} (mm)	4.4		Jesi		
Damping time $\tau_x / \tau_y / \tau_E$ (ms)	AC	oline .	549.5 /84	49.5/425.0	
Natural Chromaticity	n Bas	101	-491/-1161	-513/-1594	
Betatro	R P	363.10/36	5.22		
s 2018 CF	0.065	0.040	0.	028	
H (2 cell)	0.46	0.75	1	.94	
Natural energy spread (%)	0.100	0.066	0.	038	
Energy spread (%)	0.134	0.098	0.	080	
Energy acceptance	1.35	0.90	0	.49	
Energy acceptance by RF (%)	2.06	1.47	1	.70	
Photon number due to					
beamstrahlung	0.082	0.050	0.	023	
Beamstruhlung lifetime /quantum lifetime [†] (min)	80/80	>400			
Lifetime (hour)	0.43	1.4	4.6	2.5	
F (hour glass)	0.89	0.94	0	.99	
I	$\left(2\right)$	10	17		

	(ttbar)	Higgs	W	Z
Number of Ips		2		-
Circumference [km]		100.	0	
SR power per beam [MW]		30		
Half crossing angle at IP [mrad]		16.5	5	
Bending radius [km]		10.7	1	
Energy [GeV]	180	120	80	45.5
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037
Piwinski angle	1.21	5.94	6.08	24.68
Bunch number	35	249	1297	11951
Bunch population [10^10]	20	14	13.5	14
Beam current [mA]	3.3	16.7	84.1	803.5
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	27/1.4
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	nesi	3 5
Bunch length (SR/total) [mm]	2.2/2.9	2.2/2	red Des	2.5/8.7
Energy spread (SR/total) [%]	0.15/0.20	1 Improv	0.07/0.14	0.04/0.13
Energy acceptance (DA/RF) [%]	2.3. 20 4		1.2/2.5	1.3/1.7
Beam-beam parameters (ksix/ksiy)	0.071	0.015/0.11	0.012/0.113	0.004/0.127
RF voltage [GV]	10	2.2	0.7	0.12
RF frequency [MHz]	650	650	650	650
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202
Beam lifetime [min]	18	12.3	55	80
Hour glass Factor	0.89	0.9	0.9	0.97
Luminosity per IP[1e34/cm^2/s]	0.5	(5.0)	16	(115)

CEPC Accelerator TDR Design (Upgrade)

	Higgs	w	Z	ttbar
Number of IPs			2	
Circumference [km]			100.0	
SR power per beam [MW]	50			
Half crossing angle at IP [mrad]	16.5			
Bending radius [km]	10.7			
Energy [GeV]	120	80	45.5	180
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1
Piwinski angle	5.94	6.08	24.68	1.21
Bunch number	415	2162	19918	58
Bunch spacing [ns]	385	154	15(10% gap)	2640
Bunch population [10 ¹⁰]	14	13.5	14	20
Beam current [mA]	27.8	140.2	1339.2	5.5
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71
Phase advance of arc FODOs [degree]	90	60	60	90
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)
RF frequency [MHz]			650	
Beam lifetime [min]	20	55	80	18
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8

Higher SR power of 50MW, the Lumi. will increase ~66%.

CEPC SCRF Test Facility

CEPC SCRF Test Facility is available: Beijing Huairou (4500m²)

New SC Lab Design (4500m²)

SC New Lab is available in 2021

Crygenic system hall

Vacuum furnace (doping & annealing)

Temperature & X-ray

mapping system

Nb3Sn furnace Nb/Cu sputtering device Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

Second sound cavity

quench detection system

Helmholtz coil for

cavity vertical test

Vertical test dewars

Horizontal test cryostat

13

CEPC R&D: High Q SCRF Cavities

Vertical test of 650 MHz 2-cell cavity

- > 1.3 GHz 9-cell SCRF cavity for booster: $Q_0 = 3.4E10 @ 26.5 MV/m$
- \geq 650 MHz 2-cell SCRF cavity for collider ring: Q₀ = 6.0E10 @ 22.0 MV/m
- SCRF cavities for both booster & collider ring reach CEPC design goal

CEPC R&D: High Efficiency Klystrons

- The 1st prototype finished fabrication & passed the max. power test. Output power reaches 700 kW in CW mode, 800 kW in pulsed mode. Design efficiency is 65%, achieved efficiency ~ 62%.
- The 2nd klystron prototype is manufactured and under test at PAPS, design eff is ~ 77%, achieved efficiency ~70%.
- □ Multi-beam Klystron design is finished, design efficiency is ~ 80.5%.
- High efficiency Klystron helps to reduce electricity consumption.

The 2nd Klystron (under test)

CEPC at 800 RMB/MWh and 6000 hours/year **M RMB** 700 Save Money **130M RMB** 600 1 year bill, **90 M RMB** 500 icity 400 electi 300 200 Plot Area Excessive 100 Multi-beam Klystron 100% Efficiency, %

The 1st Klystron (tested)

HTS SC Magnet (>12T)

CEPC Physics Program (White Papers)

CEPC Operation mode		ZH	Z	W⁺W⁻	ttbar
	\sqrt{s} [GeV]	~ 240	~ 91.2	~ 160	~ 360
l	Run time [years]	7	2	1	-
	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
CDR (30MW)	$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
(,	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run time [years]		10	2	1	5
	<i>L</i> / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
Latest (50MW)	$\int L dt$ [ab ⁻¹ , 2 IPs]	20	96	7	1
(Event yields [2 IPs]	4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵

The large samples: ~10⁶ Higgs, ~10¹² Z, ~10⁸ W bosons

Physics similar to FCC-ee, ILC, CLIC

- ✤ 2019.3 Higgs White Paper published (CPC V43, No. 4 (2019) 043002)
- 2019.7 Workshop@PKU: EW, Flavor, QCD working groups formed
- ✤ 2020.1 Workshop@HKUST-IAS: Review progress, EW draft ready
- 2021.4 Workshop@Yangzhou: BSM working group formed

Yangzhou (2021)

CEPC Physics Program: Snowmass Lol

🔟 🛍 🕸 💩			*1	0ŧ ∎∎⊧ 5:01		Submitter	Title
<	聊	天成员(13)	2)		1	Xin	EF01 Higgs boson CP properties at CEPC
Q搜索					2	Yanping	EF01 Measurement of branching fractions of Higgs hadronic decays
		Althan Altha	Sart	To and	3	MJRM & Shu	EF02 Study of EWPT in Exotic Higgs decays with CEPC detector simulation
	干许涛	方亚泉	庄香爱	近ち	4	Mingrui Zhao	EF03 Feasibility study of CP violation phase Phi-s measurement via Bs->J/psi Phi at CEPC
			THA P		5	Peiwen Wu	EF03 Probing top quark FCNC couplings at future electron positron collider
	L Y	Real of	101		6	Lingfeng Li	EF03 Searching for Bs->Phivv and other b->svv processes at CEPC
刘真	GLI	杨思奇	张昊	李一鸣	7	Siqi Yang	EF04 Measurement of leptonic effective weak mixing angle at CEPC
2 miles	SA	SPACEN		0	8	Jiayin Gu	EF04 Probing new physics with measurement of ee->WW at CEPC with optimal observables
梁志均	蛋儿蛋儿	郑太范	賴培築	王伟	9	Bo Li	EF04 Measurement of Rb in hadronic Z decays at the CEPC
	D.				10	Zhao Li	EF04 NNLO electroweak correction to Higgs and Z associated production at future Higgs factory
朱华星	朱宏博	廖红波	LU	张华桥	11	Shuang-Yong Zhou	EF04 Positivity bounds on quartic-gauge-boson couplings
-		a series and a series of the s	R.S.		12	Qin qin	EF05 Exclusive Z decay
Cen	史欣	赵明锐	Wang	XCLou	13	Zhao Li	EF05 NNLO EW correction to Higgs and Z associated production at future Higgs factory
1	Ada	4 TP			14	Yang Zhang	EF08 SUSY Global fits with future colliders using GAMBIT
Hail	A Aith	変加	本物		15	Tianjun li	EF08 Probing SUSY and DM at CEPC, FCC & ILC
	CALCULATION OF	-		1-20 DE 193	16	Mengchao Zhang	EF09 Search for Asymmetric DM model at CEPC by displaced lepton jets
Carter		-		-	17	Peiwen Wu	EF09 Search for t+j+MET signals from DM models at future electron positron collider
高俊	刘言东	lovecho	武雷	王健	18	Xin Shi & Weiming	EF09 DM via Higgs portal at CEPC
		1			19	Kepan Xie	EF10 Lepton portal DM, Gravitational waves and collider phenomenology
刘佳	于江浩	于福升	杨李林	王小平	20	Taifan Zheng	RF1 Exploring NP with Bc->Tauv
		-		240100			

- ✓ With many talks presented at Snowmass meetings
- $\checkmark\,$ Many relevant performance studies, and extra physics analyses

CEPC Physics Program: Higgs and EW

	$240{ m GeV}$	$240{ m GeV},20~{ m ab}^{-1}$		$360{ m GeV},1~{ m ab}^{-1}$	
	ZH	\mathbf{vvH}	ZH	vvH	eeH
inclusive	0.26%		1.40%	\	\
$H \rightarrow bb$	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
$\mathrm{H}{ ightarrow}\mathrm{WW}$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \to \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z \gamma$	8.50%		35%		
$\operatorname{Br}_{upper}(H \to inv.)$	0.07%				
Γ_H	1.	65%	1.10%		

95% CL reach from SMEFT fit

Observabl	e current	precision	CEPC preci	sion (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 Me	V [37–41]	$0.1 { m MeV}$	(0.005 MeV)	${\cal Z}$ threshold	E_{beam}
$\Delta\Gamma_Z$	2.3 Me	V [37-41]	0.025 Me	V (0.005 MeV)	Z threshold	E_{beam}
Δm_W	9 MeV	[42-46]	0.5 MeV	(0.35 MeV)	WW threshold	d E_{beam}
$\Delta\Gamma_W$	49 MeV	/ [46–49]	2.0 Me	V (1.8 MeV)	WW threshole	d E_{beam}
Δm_t	0.76 (GeV [50]	$\mathcal{O}(1$	0) MeV ^a	<i>tt</i> threshold	
ΔA_e	4.9×10^{-3}	[37, 51–55]	1.5×10^{-1}	(1.5×10^{-5})	Z pole $(Z \to \tau)$	au) Stat. Unc.
ΔA_{μ}	0.015	[37, 53]	3.5×10^{-1}	(3.0×10^{-5})	Z pole $(Z \to \mu)$	μ) point-to-point Unc.
ΔA_{τ}	4.3×10^{-3}	37, 51-55	7.0×10 ⁻³	$P(1.2 \times 10^{-5})$	Z pole $(Z \to \tau)$	τ) tau decay model
		00470			SM	
DOT		80478	± 83			
CDF	I	80432	± 79		-	•
DEL	PHI	80336	± 67		-	•
L3		80270	± 55		- -	
OPA	L	80415	± 52		-	•
ALE	PH	80440	± 51		-	
D0 II		80376	± 23		•	
ATL	AS	80370	± 19			
CDF	2012	80387	± 19			-
LHC	b	80354	± 32			
CDF	Ш	80433	± 9			•
		i i i l				
9900 BR(Z	$80000 \rightarrow \mu e$ <	8010 7.5×10^{-7} 1	00 80 $0^{-8} - 10^{-10}$	$0200 \begin{array}{c} 803 \\ \mathcal{O}(10^{-9}) \end{array}$	300 80	400 80500 PID limited
$BR(Z \rightarrow$	$\pi^{+}\pi^{-})$			$O(10^{-10})$	$\sigma(\vec{p}_{\mathrm{track}})$) limited, good PID
$BR(Z \rightarrow$	$\pi^{+}\pi^{-}\pi^{0})$			$\mathcal{O}(10^{-9})$, uuun	au au bkg
BR(Z -	$J/\psi\gamma) <$	$1.4 imes 10^{-6}$		$10^{-9} - 10^{-10}$	l	$\ell\ell\gamma + \tau\tau\gamma$ bkg
BR(Z)	$\rightarrow \rho\gamma) <$	$2.5 imes 10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bk	g, $\sigma(p_{\text{track}})$ limited

Discovery Potential for New Physics

CEPC has significantly better detection sensitivity for dark matter and selected Higgs exotic decays than HL-LHC

Conceptual Detector Designs

Scint Glass PFA HCAL	Advantage: Cost efficient, high density Challenges: Light yield, transparency,	Solenoid Magnet (3T / 2T) Between HCAL & ECAL				
	massive production.	Advantage: the HCAL absorbers act as part	Det	Technology	Det	Technology
		of the magnet return yoke.		JadePix		Crystal ECAL
		resolution (e.g. BMR); stability.	Det Technology Det Image: Det JadePix JadePix JadePix Image: Det JadePix JadePix Image: Det JadePix TaichuPix Arcadia JadePix Out OPV(SOI) Stiching Image: Det Stiching Drift chamber Image: Det Image: Det Image: Det Image: Det Image: Det Image: Det		Si+W ECAL	
				Scint+W ECAL		
		Transverse Crystal bar ECAL	oixe	CPV(SOI)	met	Scint AHCAL
		Advantage: better π^0/γ reconstruction.		Stiching	alori	ScintGlass AHCAL
		Challenges: minimum number of readout channels; compatible with PFA calorimeter;		ТРС	ပိ	RPC SDHCAL
		maintain good jet resolution.	DID	CEPCPix		MPGD SDHCAL
		A Drift chambor	r &	Drift chamber		DR Calorimeter
		that is optimized for PID	cke	PID DC	L	Scintillation Bar
		Advantage: Work at high luminosity Z runs	Tra	LGAD	Ion	RPC
		Challenges : sufficient PID power; thin		Silicon Strip	2	μ-Rwell
Muon	+Yoke Si Tracker Si Vertex				m	SiTrk+Crystal ECAL
					Lu	SiTrk+SiW ECAL

→ Call for names for the 4th conceptual detector

SiTrk+SiW ECAL

CEPC R&D: Machine Detector Interface (MDI)

Crossing angle: 33 mrad Focal length: 2.2 m

Final focusing magnets (QD0, QF1) with Segmented Anti-Solenoidal Magnets

2021 Workshop on CEPC Detector & MDI Mechanical Design, Oct.22-23 https://indico.ihep.ac.cn/event/14392/

MOST 1

CEPC R&D: Silicon Pixel Chips

MOST 2

CPV4 (SOI-3D), 64×64 array ~21×17 µm² pixel size

Develop **CEPCPix** for a CEPC tracker basing on ATLASPix3 CN/IT/UK/DE TSI 180 nm HV-CMOS process

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

24

CEPC R&D: Time Projection Chamber

MOST 1 (IHEP+THU)

TPC Prototype + UV laser beams Low power FEE ASIC

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

 σ_{x} < 100 μm for drift length of 27cm

CEPC R&D: PFA Calorimeters

CEPC R&D: Calorimeters

Scintillator-W ECAL Prototype

Scintillator + SiPM AHCAL Prototype

Testbeam at CERN SPS for two prototypes in Oct. 2022

CEPC R&D: SDHCAL

MOST 1: RPC and MPGD (RWELL) R&D, MIP Eff > 95%

GRPC 1m x 1m (SJTU) JINST 16 (2021) P12022

RWELL 0.5m x 1m (USTC+IHEP)

R&D Plan: 5-D SDHCAL (X, Y, Z, E, Time) - MRPC + fast timing PETIROC ASIC (~40 ps)

CEPC R&D: High Granularity Crystal ECAL

Goal

- Boson Mass Resolution < 4%
- Better BMR than ScW-ECAL
- Much better sensitivity to γ/e, especially at low energy.

800

700

600

500E

400 E

300 F

200

100

- Timing at two ends for positioning along bar.
- Significant reduction of number of channels.

Conceptual Design

40cm

Full Simulation Studies

 $H \rightarrow \gamma \gamma$

Crystal ECAL

BMR = 1.2%

Performance with photons

BMR of SiW ECAL ~ 2.3%

Reconstructed Mass of Higgs

+ Optimizing PFA for crystals

7564

124.1

2,885

14.89/8

0.06138

 1.4 ± 0.0

819.6± 13.9

135 14 MassiGeVI

 124.6 ± 0.0

Entries

Mean

Std Dev

z^a / ndf

Constant

Prob

Mean

Sigm

Performance Test

CEPC R&D: New HCAL with Scintillating Glass Tiles

Full simulation studies

"SiPM-on-Tile" design for HCAL

$ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV

BMR: 3.45 %

50

150

200

100

InvM[GeV]

Further improve BMR 中国科学院高能物理和完成 E (A Development te of High Energy Physi GS Production inggangshan University Mass production **a(a**) 井冈山大学 Beijing Glass Research Institute 900 北京玻璃研究院 00000 Optical test China Building Materials Academy GS 中国建筑材料研究院 Mechanical test **() () ()** Research China Jiliang University Irradiation test 2021.8.12 2021.10.11 2021.10.31 2021.11.8 中国计量大学 Simulation Harbin Engineering University GS 哈尔滨工程大学 SiPM Research HCAL Design Harbin Institute of Technology Single Tile Test 0 11 12 13 14 15 1611 12 13 14 12 13 14 15 1 哈尔滨工业大学 2021.11.13 2021.11.22 2021.11.23 Unclear Detection -Sichuan University **GS** Application 四川大学 Others + GS1 +GS1 90 • GS2 00 • GS2 80 • GS3 • GS3 70 • GS4 + GS4 **Testing Scintillating Glass Samples** 0 - GS5 200 - GS5 Emission + GS6 + GS6 Transmission #3 Charge Hist Scaled ChA #4 #6 Entries photon=146 photon=185 Mean LY=680 ph/MeV LY=536 ph/Me Std Dev Ā 50 Underflo Overflow 10 11 12 13 14 χ² / ndf Prob 0.6277 Constan 306.2 ± 28.0 273.8 ± 3.3 Sigma 19.19 ± 1.65 #6 Entries Mean Fibits g² / rdf 296703 1.035e-254 5306 71.47/72 600 20 Detected photons at noton=180 photon=219 photon=192 LY=660 ph/Me LY=802 ph/M LY=705 ph/MeV SiPM: 273.8 p.e./MIP 100 200 500 700 300 400 900 30 1000

Better hadronic energy resolution

Goal

Scintillating Glass R&D

CEPC R&D: IDEA Tracker and Dual Readout Calorimeter

Italian groups and IHEP colleagues participated the test beam at CERN.

Continuing R&D and deepen understanding of physics potentials

- Made suggestions to MOST for R&D support and validations of key technologies & innovations
- Carrying out design improvement, R&D, site investigations-study
- R&D and made major **progress + breakthroughs** in common technologies
- CEPC accelerator and physics whitepapers for Snowmass study in 2022

International Collaboration and Engagement

- Engaging actively in ILC, FCC as well as HL-LHC upgrade activities, enhancing CERN-China relationship
- Actively participating international **detector R&D** collaborations: CALICE, LPTPC, RD*, ...
- Finding and sharing solutions to common issues (design, accelerator/detector components, ...)
- Hope to have in-person meeting and collaboration in the near future ...

Thank you for your attention !

Many thanks to our colleagues who made significant contributions to the CEPC R&D

CEPC Newsletters (quarterly)

http://cepc.ihep.ac.cn/

CEPC Site Selection

• July 5, 2021: Changsha Bureau of S&T entrusted Hunan U. to conduct a feasibility study.

• Sept 4, 2021: Hunan U. organized a review meeting by a committee consisting of experts from multiple disciplines which evaluated CEPC for its science, feasibility of a new science city based on CEPC, and overall impact on Changsha. The overall conclusion is very positive. The local government is very interested in and supportive of the CEPC project.

- > Site selection is based on geology, electricity supply, transportation, environment for foreigners
- Local support & economy, ...

Geology of Candidate Sites and Science Cities

CEPC R&D: High Q SCRF 650 MHz 1-Cell Cavity

> IHEP achieved Q₀=3.9E10@30 MV/m (650MHz 1-cell SCRF Cavity)

CEPC CDR Goal: Q₀ = 3.0E10 @ 22 MV/m

Test Results: Q₀ = 3.9E10 @ 30 MV/m Q₀ = 1.5E10 @ 37.5 MV/m

Current CEPC Organization (only for Chinese)

IARC and IDRDC

International Accelerator Review Committee

- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/U.Hamburg & Oxford U
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

International Detector R&D Review Committee

- Jim Brau, USA, Oregon
- Valter Bonvicini, Italy, Trieste
- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku

The 7th CEPC IAC Meeting

- > The 7th CEPC IAC meeting (online) was held on November 1-3, 2021
- > Nine talks about CEPC overall progress & technical details, with discussion sessions
- > The IAC presented an advisory report with many recommendations on Nov. 5, 2021

	Date and Time	Topics	Speaker
±K415 Image: David Cross Image: Michel Davier Image: Virlang Wang Image: Virlang Wang Image: David Cross Image: Michel Davier Image: Virlang Wang Image: Virlang Wang Image: Virlang Wang	Nov. 1, 20:10 - 20:55	Overview of the CEPC Project and Implementation of 2020 IAC Recommendations	Haijun Yang
Gao Peter Inni Concession Co	Nov. 1, 20:55 - 21:45	CEPC Accelerator	Jie Gao
	Nov. 1, 22:00 - 22:45	CEPC Detector R&D, Collaboration and Future	Joao Costa
Marica Biagini, INFN		IAC Accelerator Group	
Evgene Levichev	Nov. 2, 20:00 – 20:25	SppC Accelerator: HTS progress	Qingjin Xu
# Brian Foster # lan Shipsey # // // // // // // // // // // // // //	Nov. 2, 20:25 – 21:20	IARC Recommendation and Plan	Yuhui Li
V lingy Tang-1 Vining Zhang V Corroe Hou V Mingy Dong Warcel Demarteau	Nov. 2, 21:20 - 21:55	Sites and Civil Engineering	Yu Xiao
		IAC Detector Group	
st anzhen 💥 Jianbei Liu 🥂 Gang Chen 🦷 Yong Liu 👘 rohini Godbole	Nov. 2, 20:00 – 20:50	4 th Detector Concept and Validation	Jianchun Wang
/3 Hesheng Chen Yu Zhang Haoyu Shi	Nov. 2, 20:50 – 21:35	Physics and White Papers	Yaquan Fang
🔏 Weidong Li 🔪 🚈 🌋 🦨 🥻 Michelangelo Mangano 🖌 🥻	Nov. 2, 21:35 – 22:00	Software Development	Weidong Li
Chenghui Yu Xingtao Huang Wenxing Fang Ivan Smiljanic Xiaomei Zhang	Nov. 3, 20:00 – 22:00	Discussions sessions (Management, Accelerator, Detector)	

CEP

CEPC Accelerator R&D: IARC Meetings

- In 2021, two online International Accelerator Review Committee (IARC) meetings took place,
 - > May (11 talks)
 - October (22 talks)
- IARC delivered two dedicated review reports

2021 Second CEPC IARC Meeting

IARC Committee

October 20th, 2021

The Circular Electron Positron Collider (CEPC) and Super Proton-Proton Collider (SppC) Study Group, currently hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences, completed the conceptual design of the CEPC accelerator in 2018. As recommended by the CEPC International Advisory Committee (IAC), the group began the Technical Design Report (TDR) phase for the CEPC accelerator in 2019, with a completion target year of 2022. Meanwhile an International Accelerator Review Committee (IARC) has been established to advise on all matters related to CEPC accelerator design, the R&D program, the study of the machine-detector interface region, and the compatibility with an upgrade to the t-tbar energy region, as well as with a future SppC.

The second 2021 CEPC International Accelerator Review Committee was held remotely due to the Covid-19 pandemic on October 11th to 14th 2021. A total of 22 talks were presented on a variety of topics.

1 General comments

The Committee congratulates the CEPC team for the work performed in the last months and presented at this meeting. In particular, the progress on the R&D of the hardware components looks very promising. The team has updated the table of parameters for the high-luminosity running, as well as the lattices and components for all accelerator systems: sources, Linac, Booster and Collider.

May, 2021: <u>https://indico.ihep.ac.cn/event/14295</u> . October, 2021: <u>https://indico.ihep.ac.cn/event/15177</u> .

IARC provides positive feedbacks, reminds missing studies & inconsistency, stressing the difficulties of key prototypes, it helps to make CEPC accelerator design a credible and feasible scheme.

The 2021 CEPC International Accelerator Review Committee

Review Report

May 19, 2021

Overview

The CEPC International Accelerator Review Committee was held remotely due to the Covid-19 pandemic on May 11th and 12th 2021. This is the second IARC meeting.

The Circular Electron Positron Collider (CEPC+SppC) Study Group, currently hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences, completed the conceptual design of the CEPC accelerator in 2018. As recommended by the CEPC International Advisory Committee (IAC), the group began the Technical Design Report phase for the CEPC accelerator in 2019, with a completion target year of 2022. Meanwhile an International Accelerator Review Committee (IARC) has been established to advise on all matters related to CEPC accelerator design, the R&D program, the study of the machine-detector interface region, and the compatibility with an upgrade to the t-tbar energy region, as well as with a future SppC. The first IARC meeting took place in Beijing during the CEPC international workshop on Nov. 18-21, 2019.

CEPC Accelerator Design Improvement

High luminosities at H and Z factories

- Optimization of parameters, improving dynamic aperture(DA) to include errors and more effects
- New lattice for high luminosity at Higgs
- New RF section layout
- More detailed study of MDI
- Optimization of the booster design and magnets
- A new alternative design of the LINAC injector
- A new plasma injector design
- Injection design
- •
- Accelerator Review Committee
 - Recommended by the IAC, established & met in November, 2019
 - Two IARC meeting held in 2021

CDR scheme (Higgs)	 ✓ L*=2.2m, θc=33mrad, βx*=0.36m, βy*=1.5mm, Emittance=1.2nm – Strength requirements of anti-solenoids (peak field B_z~7.2T) – Two-in-one type SC quadrupole coils (Peak field 3.8T & 136T/m)
High luminosity scheme (Higgs)	 ✓ L*=1.9m, θc=33mrad, βx*=0.33m, βy*=1.0mm, Emittance=0.68nm – Strength requirements of anti-solenoids (peak field B_z~7.2T) – Two-in-one type SC quadrupole coils (Peak field 3.8T & 141T/m) with room temperature vacuum chamber & Iron yoke

CEPC Accelerator: Plasma Injector

Coil1 RF Gun Coil2 S-band Linac Triplet1 Chicane Triplet2 Experiment Goal: 1. Decrease the energy spread from 1% to 0.1%

2. Study Hollow channel impact on beam quality

CEPC Study for Snowmass: Physics

	0/ 11.52	*** \$ 10 10			
WG	// 11.35	• • 4 49		言息(121)	く 聊天信
EF01	8				
EF02	开心	庄胥爱	方亚泉	王连涛	曼曼奇
EF03	李一鸣 ²⁴ 王伟	张昊 就具 前培築	杨思奇 MRLLX 郑太范	GLI でです 蛋儿蛋儿	刘真 梁志均(
EF04	张华桥	LU	廖红波	K 宏博	未 华星
EF05-07	XCLou	Wang J	赵明锐	史家	Cen
EF08					at the state
EF09-10	a映嘉阴 正健	学文 武雷 (⇒≄IJ Covecho	学 (例 Y M) 刘 言 东	学碑波 高俊
	3	4		-	Contraction of the

WG	Lol		
EF01	Higgs boson CP properties at CEPC		
	Measurement of branching fractions of Higgs hadronic decays		
EF02	Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC Detector Simulation		
	Complementary Heavy neutrino search in Rare Higgs Decays		
EF03	Feasibility study of CP-violating Phase φs measurement via Bs \rightarrow J/ $\Psi \varphi$ channel at CEPC		
	Probing top quark FCNC couplings tq\gamma, tqZ at future e+e- collider		
	Searching for Bs $\rightarrow \phi$ vv and other b \rightarrow svv processes at CEPC		
	Measurement of the leptonic effective weak mixing angle at CEPC		
EF04	Probing new physics with the measurements of $e+e- \rightarrow W+W-$ at CEPC with optimal observables		
	NNLO electroweak correction to Higgs and Z associated production at future Higgs factory		
-05-07	Exlusive Z decays		
EF08	SUSY global fits with future colliders using GAMBIT		
	Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC		
-09-10	Search for t + j + MET signals from dark matter models at future e+e- collider		
	Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets		
	Dark Matter via Higgs portal at CEPC		
	Lepton portal dark matter, gravitational waves and collider phenomenology		

CEPC Study for Snowmass: Detector R&D

Snowmass — Letters of Intent

14 CEPC-Related Detector Lol submitted

https://indico.ihep.ac.cn/event/12410/

Detector R&D	
Conveners: Joao Guimaraes Costa, WANG Jianchun, Mr. Manqi Ruan (IHEP)	
15:00 CEPC Detectors Overview LoI 1'	15:10 PFA Calorimeter 1'
SNOWMASS21-EF1_EF4-IF9_IF0-260.pdf	Speakers: Haijun Yang (Shanghai Jiao Tong University), Dr. Jianbei Liu (University of Science an Technology of China), Dr. Yong Liu (Institute of High Energy Physics)
Speakers: Joao Guimaraes Costa, Mr. Manqi Ruan (IHEP), WANG Jianchun Material: Paper 🕜 Slides 🔁	Material: Slides 📆
15:02 IDEA Concert 1/	15:11 High Granularity Crystal Calorimeter 1'
13.02 IDEA CORCEPT 1 Speaker: Franco Bedeschi (INEN-Pisa)	Speaker: Dr. Yong Liu (Institute of High Energy Physics)
Material: Paper 3	Material: Paper 🚱 Slides 📆
15:03 Dual Readout Calorimeter 1'	15:12 Muon Scintillator Detector 1'
Speaker: Roberto Ferrari (INFN)	Speaker: Dr. Xiaolong Wang (Institute of Modern Physics, Fudan University)
Material: Paper CP	Material: document 📆
15:04 Drift Chamber 1'	15:13 Vertex LoI 1'
Speaker: Franco Grancagnolo	Speaker: Prof. Zhijun Liang (IHEP)
Material: Paper C	Material: Slides 🔂
15:06 mu-RWELL (muons, preshower) 1'	15:15 MDI LoI 1'
Speaker: Paolo Giacomelli (INFN-Bo)	Speaker: Dr. Hongbo ZHU (IHEP)
Material: Paper C	Material: Slides 🔁
15:08 Time Detector LoI 1'	15:16 TPC LoI 1'
Speaker: Prof. Zhijun Liang (IHEP)	Speaker: Dr. Huirong Qi (Institute of High Energy Physics, CAS)
Material: Slides 📆	Material: Slides 📆
15:09 Kev4hep 1'	
Speakers: Dr. Weidong Li (高能所), Dr. Tao LIN (高能所), Prof. Xingtao Huang (S	Shandong University), 15:17 Solenoid R&D LoI 1'
Wenxing Fang (Beihang University)	Speaker: Dr. Feipeng NING (IHEP)
Material: Slides 🔂	Material: Slides 🔂

CEPC Physics Performance (CDR)

e⁺e⁻ annihilations at the CEPC

- CEPC can make detailed study of various physics processes
- Higgs bosons are detected via recoil mass of the reconstructed Z, allowing for model independent & full investigation of the Higgs and any new physics that Higgs may reveal
- Very challenging events with missing neutrinos and jets are well reconstructed and identified

CEPC Physics Performance (CDR)

Order of magnitude improvement in precision => Unknown / discoveries

Compare to the HL-LHC, CEPC can improve the precision of Higgs couplings significantly

Chinese Physics C Vol. 43, No. 4 (2019) 043002

CEPC can improve the precision of the EW parameters by a factor of ~ 5-10

CEPC Flavor Physics

Analysis of $B_c \rightarrow \tau v_{\tau}$ at CEPC \rightarrow |Vcb|~O(1%) T. Zheng et.al., CPC 45, No. 2 (2021)

Analysis of $B_c \rightarrow \tau v_{\tau}$ at CEPC*

Taifan Zheng(郑太范)¹ Ji Xu(徐吉)² Lu Cao(曹璐)³ Dan Yu(于丹)⁴ Wei Wang(王伟)² Soeren Prell⁵ Yeuk-Kwan E. Cheung(张若筠)¹ Manqi Ruan(阮曼奇)⁴⁺

¹School of Physics, Nanjing University, Nanjing 210023, China
²INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
³Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
⁴Institute of High Energy Physics, Beijing 100049, China
⁵Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Abstract: Precise determination of the $B_c \rightarrow \tau \nu_{\tau}$ branching ratio provides an advantageous opportunity for understanding the electroweak structure of the Standard Model, measuring the CKM matrix element $|V_{cb}|$, and probing new physics models. In this paper, we discuss the potential of measuring the process $B_c \rightarrow \tau \nu_{\tau}$ with τ decaying leptonically at the proposed Circular Electron Positron Collider (CEPC). We conclude that during the Z pole operation, the channel signal can achieve five- σ significance with $\sim 10^9 Z$ decays, and the signal strength accuracies for $B_c \rightarrow \tau \nu_{\tau}$ yield is 3.6×10^6 . Our theoretical analysis indicates the accuracy could provide a strong constraint on the general effective Hamiltonian for the $b \rightarrow c\tau \nu$ transition. If the total B_c yield can be determined to O(1%) level of accuracy.

Test of Lepton-Flavor-Universality (LFU) L.F. Li, T. Liu, JHEP 06 (2021) 064

	Experimental	SM Prediction
R_K	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01 [4]
R_{K^*}	$0.69\substack{+0.12\\-0.09}$	0.996 ± 0.002 [5]
R_D	0.340 ± 0.030	0.299 ± 0.003
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005

at level of 2-3 σ . $R_{K^{(*)}} \equiv \frac{\text{BR}(B \to K^{(*)}\mu^+\mu^-)}{\text{BR}(B \to K^{(*)}e^+e^-)}$

 R_{κ^*} & R_{n^*} anomalies

b→s $\tau^+\tau^-$ is motivated to address LFU violating $R_{D^{(*)}} \equiv \frac{\text{BR}(B \to D^{(*)}\tau\nu)}{\text{BR}(B \to D^{(*)}\ell\nu)}$ puzzle involving 3rd generation lepton directly.

Channel	SM prediction for BR
$B^0 \to K^{*0} \tau^+ \tau^-$	$(0.98 \pm 0.10) \times 10^{-7} [11]$
$B_s \to \phi \tau^+ \tau^-$	$(0.86 \pm 0.06) \times 10^{-7} $ [11]
$B^+ \to K^+ \tau^+ \tau^-$	$(1.20 \pm 0.12) \times 10^{-7} $ [11]
$B_s \to \tau^+ \tau^-$	$(7.73 \pm 0.49) \times 10^{-7} \ [12]$

48

CEPC Physics at 360 GeV

- 360 GeV run provides critical inputs from the WWfusion Higgs productions
- Useful for measuring κ_W , κ_Z , Γ_h , Global EFT fit
- With 2 ab⁻¹, H width precision ~ 1.4% (x2 improvement)

	240GeV, 5.6ab ⁻¹	360GeV, 2ab ⁻¹	
	ZH	ZH	vvH
any	0.50%	1%	١
$H \rightarrow bb$	0.27%	0.63%	0.76%
$H \rightarrow cc$	3.3%	6.2%	11%
$H \rightarrow gg$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
$H \rightarrow ZZ$	7.9%	14%	15%
$H \rightarrow \tau \tau$	0.8%	1.5%	3%
$H \rightarrow \gamma \gamma$	5.7%	8%	11%
$H \rightarrow \mu \mu$	12%	29%	40%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	١
Width	2.8%	1.4	1%

- Currently we study the top mass and width using tt threshold method:
 - One order of magnitude better precision than the LHC is expected
 - A quick energy scan with low lumi to find the optimal energy point before data taking with the full lumi. is proposed

CEPC Detector and Software

Recent added CEPC software applications:

- Software for SiTrk + DC design, detector description and track fitting
- Cluster counting method of Drift Chamber (DC)
- Simulation and simplified digitization of the crystal bar ECal

Full simulation reconstruction Chain functional, iterating/validation with hardware studies

The physics motivations dictate our selection of detector technologies

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H ightarrow b ar{b}/c ar{c}/gg$	${ m BR}(H o b ar{b}/car{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{ ext{jet}}_E/E = 3 \sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${ m BR}(H o \gamma \gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

- Flavor physics \Rightarrow Excellent PID, better than 2σ separation of π/K at momentum up to ~20 GeV.
- EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

Selection of Detector R&D

A Drift Chamber That is Optimized for PID

- Goal: $2\sigma \pi/K$ separation at P < ~ 20 GeV/c.
- Cluster counting method, or dN/dx, measures the number of primary ionization
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak finding algorithm development.

Attempts to Optimize A PID Drift Chamber

CEPC R&D: ScW-ECAL Prototype

MOST 1

ScECAL prototype with 6700 channels 32 layers (EBU), 22 x 22 cm², ~22X₀ Scintillator (5×45mm²) + MPPC S12571 Embedded FEE (192 SPIROC2E ASICs)

It has been tested with cosmic rays & an electron beam at IHEP (Nov. 2020).

Cell Granularity: 5mm × 5mm Position resolution: 1.6-1.8mm

CEPC R&D: PFA HCAL

0.7

0.65

 -10^{2}

Rate(kHz/cm²) 10³

RWell

Solenoid Magnet Inside HCAL

32 3

MLI

MLI

nermal shield

HTS cable

Pure Al strips

Vacuum Dewar

20

35

Cold mass weight (ton)

Total weight (ton)

HTS Prototype Cable Development

Prototype cable: 15×10 mm², Tape Width: 4 mm, thickness: 80 µm; tape layer: 20, Expected operating current: 6000 A@5K

Big Progress: 10 m ASTC prototype cable is ready. Cable test is ongoing.

The Experimental Area

Main cavern to host the detector

- 40*30*30 m³ (L*H*W)
- One main access shaft, Ø16 m
- An 1K-ton gantry crane for large heavy objects
- Auxiliary cavern for peripheral equipment and devices
- 80*18*18 m³ (L*H*W)
- One service shaft of Ø9 m
- One personnel access shaft Ø6 m

Ground level buildings

Thank you !

