CEPC workshop 2022 May

New physics hints with 2HDM under the Higgs Precision Measurements

Wei Su

2008.05492 (T. Han, S. Li, S. Su, WS, Y. Wu)

1808.02037 (N. Chen, T. Han, S. Su, WS, Y. Wu) 1912.01431 (N. Chen, T. Han, S. Li, S. Su, WS, Y. Wu)

Outline

- *Higgs Precision Measurements and 2HDM
- Study Results: exclusion ability
- Study Results: discovery potential
- Study Results: discrimination ability
- Study Results: Compatibility test
- *Summary

Higgs Precision Measurements

Precision: Higgs couplings

LHC Run-II: ATLAS-CONF-2019-005 **ATLAS** Preliminary ⊷−Total Stat. - Syst. SM $\sqrt{s} = 13 \text{ TeV}, 24.5 - 79.8 \text{ fb}^{-1}$ $m_{H} = 125.09 \text{ GeV}, |y_{11}| < 2.5$ p_{SM} = 71% Total Stat. Syst. + 0.09 ggF үү 0.96 ± 0.14 (±0.11. ggF *ZZ* 1.04 ± 0.14 , ± 0.06) ggF WW 1.08 ± 0.19 (± 0.11 , ± 0.15) +0.46 ggF ττ +0.370.96 ggF comb. + 0.07 1.04 ± 0.09 (±0.07, - 0.06 +0.26 VBF γγ +0.40 -0.35 + 0.31 1.39 VBF ZZ + 0.98 - 0.83 +0.94 -0.81, + 0.27 2.68 VBF WW + 0.36 - 0.35 + 0.29 - 0.27 0.59 ± 0.21) VBF ττ +0.58 + 0.42 + 0.40 1.16 - 0.35 - 0.40 + 1.63 - 1.57 VBF bb + 1.67 - 1.61 + 0.39 3.01 + 0.24 - 0.22 VBF comb. + 0.18 +0.16 1.21 -0.13 - 0.17 + 0.58 - 0.54 + 0.53 - 0.49 + 0.25 VH γγ 1.09 VH ZZ + 1.20 - 0.78 + 1.18 +0.18 0.68 + 0.27 + 0.20 VH bb +0.18 1.19 + 0.24 +0.17 VH comb. 1.15 ±0.16, -0.16 +0.41 + 0.36 - 0.33 + 0.19 ttH+tH γγ 1.10 -0.14 + 0.59 - 0.57 + 0.43 + 0.41 ttH+tH VV 1.50 - 0.42 - 0.38 + 0.75 + 1.13 + 0.84 *ttH+tH* ττ 1.38 - 0.76 + 0.60 - 0.59 ttH+tH bb 0.79 ± 0.29 , ± 0.52) $^{+0.26}_{-0.24}$ (± 0.17 , $^{+0.20}_{-0.18}$ ttH+tH comb. 1.21 -2 2 6 8 0 4 Parameter normalized to SM value

3

Precision: Higgs couplings

CEPC-CDR, FCC-ee, ILC Operating Scenarios

collider	CEPC	F	CC-ee		ILC							
\sqrt{s}	$240\mathrm{GeV}$	$240{ m GeV}$	$365{ m GeV}$		$250{ m GeV}$	350	GeV	$500{ m GeV}$				
$\int \mathcal{L} dt$	5.6 ab^{-1}	5 ab^{-1}	$1.5 {\rm ~ab}^{-1}$		2 ab^{-1}	$200 {\rm ~fb}^{-1}$		4 a	b^{-1}			
production	Zh	Zh	Zh $ uar{ u}h$		Zh	Zh	$\nu \bar{\nu} h$	Zh	$\nu \bar{\nu} h$			
$\Delta\sigma/\sigma$	0.5%	0.5%	0.9% –		0.71%	2.0% –		1.05				
decay		$\Delta(\sigma \cdot BR) / (\sigma \cdot BR)$										
$h o b\bar{b}$	0.27%	0.3%	0.5% $0.9%$		0.46%	1.7%	2.0%	0.63%	0.23%			
$h \to c\bar{c}$	3.3%	2.2%	6.5% 10%		2.9%	12.3%	21.2%	4.5%	2.2%			
$h \to gg$	1.3%	1.9%	3.5% $4.5%$		2.5%	9.4%	8.6%	3.8%	1.5%			
$h \to WW^*$	1.0%	1.2%	2.6% $3.0%$		1.6%	6.3%	6.4%	1.9%	0.85%			
$h \to \tau^+ \tau^-$	0.8%	0.9%	1.8%	8.0%	1.1%	4.5%	17.9%	1.5%	2.5%			
$h \rightarrow ZZ^*$	5.1%	4.4%	12%	10%	6.4%	28.0%	22.4%	8.8%	3.0%			
$h ightarrow \gamma \gamma$	6.8%	9.0%	18%	22%	12.0%	43.6%	50.3%	12.0%	6.8%			
$\mid h \rightarrow \mu^+ \mu^-$	17%	19%	40% –		25.5%	97.3%	178.9%	30.0%	25.0%			
$(\nu\bar{\nu})h \to b\bar{b}$	2.8%	3.1%			3.7%							

2HDM: Brief Introduction

• Two Higgs Doublet Model

$$\begin{split} V(\Phi_{1},\Phi_{2}) &= m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} - m_{12}^{2}(\Phi_{1}^{\dagger}\Phi_{2} + h.c.) + \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} \\ &+ \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) + \frac{1}{2} \Big[\lambda_{5}(\Phi_{1}^{\dagger}\Phi_{2})^{2} + h.c.\Big] \\ &+ \frac{1}{2}(\Phi_{1}^{\dagger}\Phi_{2} + h.c.)(\lambda_{6}\Phi_{1}^{\dagger}\Phi_{1} + \lambda_{7}\Phi_{1}^{\dagger}\Phi_{1}) \\ \Phi_{i} &= \begin{pmatrix} \phi_{i}^{+} \\ (v_{i} + \phi_{i}^{0} + iG_{i})/\sqrt{2} \end{pmatrix} \quad v_{u}^{2} + v_{d}^{2} = v^{2} = (246 \text{GeV})^{2} \\ &\tan \beta = v_{u}/v_{d} \\ \end{pmatrix} \\ \begin{pmatrix} H^{0} \\ h^{0} \end{pmatrix} &= \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_{1}^{0} \\ \phi_{2}^{0} \end{pmatrix}, \quad A = -G_{1} \sin \beta + G_{2} \cos \beta \\ H^{\pm} &= -\phi_{1}^{\pm} \sin \beta + \phi_{2}^{\pm} \cos \beta \end{split}$$

2HDM: Brief Introduction

Two Higgs Doublet Model

$$V(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{0} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{0} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{0} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{0} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{0} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{0} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) (\lambda_{0} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{7} \Phi_{1}^{\dagger} \Phi_{1}) + \frac{1}{2} [\lambda_{5} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] + \frac{1}{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{1}{2} ($$

2HDM: Brief Introduction

$$\kappa_i = g_{hii}^{BSM} / g_{hii}^{SM}$$

Model	κ_V	κ_u	κ_d	κ_ℓ
2HDM-I	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
2HDM-II	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$
2HDM-L	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
2HDM-F	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$

• Parameters (CP-conserving, Flavor Limit, Z₂ Symmetry)

$$\begin{array}{c|c} m_{11}^2, m_{22}^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5 \end{array} \longrightarrow \begin{array}{c} v, \tan \beta, \alpha, m_h, m_H, m_A, m_{H^{\pm}} \end{array}$$

Soft Z_2 symmetry breaking: m_{12}^2
$$\begin{array}{c} 246 \text{ GeV} \end{array}$$

Exclusion ability : Study strategies

2HDM: Loop Level

2HDM: Loop Level

11

Study Results: discovery potential

• method $\chi^2 = \sum_i \frac{(\mu_i^{\rm hyp} - \mu_i^{\rm obs})^2}{\sigma_{\mu_i}^2} \qquad {\rm null\ hypothesis\ H0:SM}$

To claim the discovery of BSM at $\chi^{SM} > 48.2$ $\mu^{hyp} = \mu^{SM} = 1$ 5 σ significance : p=5.7*10^(-7)

degrees of freedom : signal strength modifiers (SSM), or μ parameter : 10 for CEPC

Study Results: discovery potential

Choose one point of BSM as the observed, to see if SM is rejected.

If the future observable is same to Type-I, The center region can not claim a discovery The two sides region can claim

$$\cos(\beta - \alpha) \lesssim -0.1$$
$$\cos(\beta - \alpha) \gtrsim 0.08$$

Study Results: discovery potential

Study Results: discrimination ability

method

performing the χ^2 statistic

d.o.f. = # SSMs (μ) hypothesized model (Null model): One physical point

d.o.f.	1	2	3	4	5	6	7	8	9	10
$\chi^2(p=0.05)$	3.84	5.99	7.81	9.49	11.1	12.6	14.1	15.5	16.9	18.3

BMs:

$$(\cos(\beta - \alpha), \tan\beta)$$
 Small $\tan\beta$
 Large $\tan\beta$

 Type-I
 IA: $(-0.019, 1.0)$
 IB: $(-0.077, 10)$

 Type-II
 IIA: $(0.012, 0.3)$
 IIB: $(0.005, 3.0)$

Study Results: discrimination ability

Study Results: discrimination ability

compatibility test method

```
Test Type-I with Type-II:
observable : one point of type-II,
test type-I by performing the \chi^2 statistic
```

d.o.f. = # SSMs (μ)

hypothesized model (Null model): Type-II, instead of SM

d.o.f.	1	2	3	4	5	6	7	8	9	10
$\chi^2(p=0.05)$	3.84	5.99	7.81	9.49	11.1	12.6	14.1	15.5	16.9	18.3

• Type-II $(\cos(\beta - \alpha), \tan\beta) = (-0.01, 1)$

If there is points of Type-I is allowed, then BM of Type-II is compatible under CEPC precision

• Type-II $(\cos(\beta - \alpha), \tan\beta) = (-0.01, 1)$

We can do the similar research between any two models

Summary: Higgs precision measurements

TExclusion : Maximal likelihood vs. absolute χ^2 study

- Discovery potential: test null model SM
- Discrimination ability: a deviation observed
- Compatibility test: different BSMs

Thanks !

2HDM: Tree Level Model Distinction

2HDM: Tree Level Model Distinction

Outline

*Higgs and Z-pole Precision Measurements

Study strategies

Study Results: Tree & one-loop Level

*****2HDM & Electroweak Phase Transition

2HDM: One-Loop Level

(1) Loop + degenerate: $\cos (\beta - \alpha) = 0$, $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (2) Tree + Loop + degenerate: $\cos (\beta - \alpha) \neq 0$, $m_{\Phi} \equiv m_{H} = m_{A} = m_{H^{\pm}}$ (3) Tree + Loop + non-degenerate: $\Delta m_{a} = m_{A} - m_{H}$, $\Delta m_{c} = m_{H^{\pm}} - m_{H}$

2HDM: theoretical consideration

Vacuum Stability

$$\begin{split} \lambda_1 &> 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 &+ \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}. \\ &\uparrow \text{Unitary} \qquad |\lambda_i| \leq 4\pi^{i} \\ &\uparrow \text{Perturbativity} \qquad |\Lambda_i \leq 16\pi| \\ \end{split}$$

2HDM: theoretical consideration

Vacuum Stability

$$\begin{array}{ll} \lambda_1 > 0, & \lambda_2 > 0, & \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \\ \lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}. \end{array}$$

Unitary $|\lambda_i| \leq 4\pi$

Perturbativity $|\Lambda_i \leq 16\pi|$

 $\cos (\beta - \alpha) = 0,$ $m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$

$$v^{2}\lambda_{1} = m_{h}^{2} + t_{\beta}^{2}\lambda v^{2},$$

$$v^{2}\lambda_{2} = m_{h}^{2} + \lambda v^{2}/t_{\beta}^{2},$$

$$v^{2}\lambda_{3} = m_{h}^{2} + \lambda v^{2},$$

$$v^{2}\lambda_{4} = -\lambda v^{2},$$

$$v^{2}\lambda_{5} = -\lambda v^{2}.$$

2 Free parameters

2HDM: theoretical consideration

 $Lumi = 25 ab^{-1}$

Higgs direct search at LHC

Conventional Search

Exotic: A -> HZ 50 20 10 5 **BP-B** $m_A = m_{H^+} > m_H$ $\Delta m = 200 \text{ GeV}$ 2 $A \rightarrow HZ \rightarrow \tau \tau II$ LHC HL-LHC FCC 1 0.5 1.0 2.0 3.0 4.0 *m_A* [TeV] S. Su et. al., 1812.01633

 $\tan eta$

Type-II

$$\cos (\beta - \alpha) \neq 0,$$

$$m_{\Phi} \equiv m_H = m_A = m_{H^{\pm}}$$

Z Pole Precision

	Current $(1.7 \times 10^7 Z's)$				CEPC $(10^{10}Z's)$				FCC-ee $(7 \times 10^{11} Z's)$				ILC $(10^9 Z's)$					
	c c		<i>a</i>		correla	tion	σ		correla	tion	σ		correla	tion	σ		correla	tion
	0	S	T	U	(10^{-2})	S	T	U	(10^{-2})	S		U	(10^{-2})	S	T	U		
S	0.04 ± 0.11	1	0.92	-0.68	2.46	1	0.862	-0.373	0.67	1	0.812	0.001	3.53	1	0.988	-0.879		
T	0.09 ± 0.14	-	1	-0.87	2.55	-	1	-0.735	0.53	_	1	-0.097	4.89	-	1	-0.909		
U	-0.02 ± 0.11	2 <u>—</u> 2		1	2.08			1	2.40	_		1	3.76		_	1		

Z Pole Precision

U

Z Pole Precision

2HDM: Type-I

Constraints at Large tanß

Summary 1: Higgs precision

Alignment vs Non-alignment

Degenerate vs Non-gedenerate

👋 Tree vs Loop

2HDM

Complementary to

LHC direct search

