The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & corresponding optimization studies

Yongfeng Zhu

advisor : Manqi Ruan

IHEP

2022 年 5 月 23 日

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

(日)

Motivation

- The g(Hcc), the second generation fermion Yukawa coupling, is one of the most important benchmark at CEPC, and its measurement strongly depend on the Higgs branching ratio measurement accuracy.
- It is very important to estimate the measurement accuracy of Higgs branching ratio to verify the Higgs mechanism.

Contents

- The relative accuracy of signal strength measurement of $\nu\nu H(H \rightarrow b\bar{b}, c\bar{c}, gg)$.
 - key performance : flavor tagging
- The relative accuracy of signal strength measurement of $qqH(H \rightarrow b\bar{b}, c\bar{c}, gg)$.
 - key performance : flavor tagging
 - key performance : color singlet identification
- summary

Sample

• all SM processes at CEPC ($\sqrt{s} = 240 GeV$) with integrated luminosity of $5600 fb^{-1}$

▲□▶ ▲□▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$IIH(H \rightarrow b\bar{b}, H \rightarrow c\bar{c}, H \rightarrow gg)$ accuracy measurement at CEPC ($\sqrt{s} = 250 \text{ GeV}$ with integrated luminosity $5000fb^{-1}$)

Chinese Physics C Vol. 44, No. 1 (2020) 013001

Measurements of decay branching fractions of $H \rightarrow b\bar{b}/c\bar{c}/gg$ in associated $(e^+e^-/\mu^+\mu^-)H$ production at the CEPC*

Yu Bai(白羽)^{1;1)} Chun-Hui Chen(陈春晖)^{2;2)} Ya-Quan Fang(方亚泉)^{3;3)} Gang Li(李刚)^{3;4)} Man-Qi Ruan(阮曼奇)^{3;5)} Jing-Yuan Shi(史静远)^{1,4} Bo Wang(王博)^{1,5} Pan-Yu Kong(孔攀宇)^{1,6} Bo-Yang Lan(兰博扬)¹ Zhan-Feng Liu(刘站峰)¹ ¹School of Physics, Southeast University, Nanjing 210096, China

²Department of Physics and Astronomy, Now State University, Ames 50011-3160, USA ³Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ⁴School of physics and astronomy, the University of Manchester, Oxford Rd, M13 9PL, UK ⁵Department of Physics, College of Sciences, Northeastern University, Shenyang 110004, China ⁵School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China

		$\mu^+\mu^-H$			e^+e^-H	
	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$	H → bb	$H \rightarrow c \bar{c}$	$H \rightarrow gg$
accuracy	1.1%	10.5%	5.4%	1.6%	14.7%	10.5%

for the detail : https://arxiv.org/abs/1905.12903v2

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$\nu\nu H(H \rightarrow b\bar{b}, H \rightarrow c\bar{c}, H \rightarrow gg)$ accuracy measurement

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

イロト イポト イヨト イヨト 二日

The following cuts were used to identify $\nu\nu Hq\bar{q}/gg$.

Э

BDT for selecting $vvHq\bar{q}$ input variables :

- recoilMass : the recoil mass of final state particles
- visEn : visible energy of final state particles
- Npfo : number of final state particles
- leadLepEn : leading lepton energy,
- leadNeuEn : leading neutral energy
- Pt : the transverse momentum of all final state particles
- PI : the longitudinal momentum of all final state particles Correlation Matrix (signal)

- Pmax : the maximum transverse momentum among final state particles
- Y23
- InvMass : visible mass
- num_charge : number of charge particles
- Angle : the angle between two jets
- 4 momentum of two jets

The full cut chain shown in the following table.

	ννHqq	2f	SW	SZ	ww	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	178890	8.01 <i>E</i> 8	1.95E7	9.07E6	5.08E7	6.39E6	2.18E7	961606	16.86
recoilMass (GeV) ∈ (74, 131)	157822	5.11 <i>E</i> 7	2.17E6	1.38E6	4.78E6	1.30 <i>E</i> 6	1.08 <i>E</i> 6	74991	4.99
<i>visEn</i> (GeV) ∈ (109, 143)	142918	2.37E7	1.35E6	8.81 <i>E</i> 5	3.60E6	1.03 <i>E</i> 6	6.29 <i>E</i> 5	50989	3.92
leadLepEn (GeV) ∈ $(0, 42)$	141926	2.08E7	3.65 <i>E</i> 5	7.24E5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34 <i>E</i> 5	46963	3.59
multiplicity $\in (40, 130)$	139545	1.66E7	2.36E5	5.24 <i>E</i> 5	2.62E6	9.07E5	4977	42751	3.29
leadNeuEn (GeV) ∈ $(0, 41)$	138653	1.46 <i>E</i> 7	2.24E5	4.72E5	2.49E6	8.69 <i>E</i> 5	4552	42303	3.12
Pt (GeV) ∈ (20, 60)	121212	248715	1.56E5	2.48E5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	1.37
<i>PI</i> (GeV) ∈ (0, 50)	118109	52784	1.05 <i>E</i> 5	74936	7.30E5	1.13E5	847	34279	0.94
-log10(Y23) ∈ (3.375, +∞)	96156	40861	26088	60349	2.25E5	82560	640	10691	0.76
InvMass (GeV) ∈ (116, 134)	71758	22200	11059	6308	77912	13680	248	6915	0.64
BDT € (-0.02, 1)	60887	9140	266	2521	3761	3916	58	1897	0.47

・ロマ・山マ・山マ・山マ

cut based flavor tagging

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

Э

イロト イポト イヨト イヨト

introduce the flavor tagging performance matrix :

eff∖to			
true	b	с	udsg
b	b <mark>to</mark> b	b <mark>to</mark> c	b <mark>to</mark> udsg
с	c <mark>to</mark> b	c <mark>to</mark> c	c <mark>to</mark> udsg
udsg	udsg <mark>to</mark> b	udsg <mark>to</mark> c	udsg <mark>to</mark> udsg

to : identified as

c to c : the ratio of c jet identified as c

	с	b	udsg
udsg	0	0	1
b	0	1	0
с	1	0	0

perfect flavor tagging

	с	b	udsg
udsg	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
b	1/3	$\frac{1}{3}$	$\frac{1}{3}$
с	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

non flavor tagging

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Optimized matrix

- The b-likeness and c-likeness of two jets can be displaced in 2D graph.
- ② The cut on b-likeness and c-likeness can be find to maximize the value of $eff(b \rightarrow b) + eff(c \rightarrow c) + eff(udsg \rightarrow udsg)$, the trace of flavor tagging matrix.

< ロ > < 同 > < 回 > < 回 >

Optimized matrix :

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

クへで 12/45

Ξ

events distribution based on optimized matrix :

$$-2 \cdot log(\ell) = \sum_{i=1}^{i=6} \frac{[S_b \cdot N_{b,i} + S_c \cdot N_{c,i} + S_{light} \cdot N_{light,i} + N_{bkg,i} - N_i]^2}{N_i}$$

- S_b : the signal strength of $\nu\nu Hb\bar{b}$
- $N_{b,i}$: the event number of $\nu\nu Hb\bar{b}$ in *ith* bin
- N_i : the total event number in *i'th* bin of $\nu\nu Hb\bar{b}$, $\nu\nu H/c\bar{c}$, $\nu\nu Hgg$ and backgrounds
- N_{bkg,i} is the expected event number in *ith* bin of backgrounds,
- similar for S_c, S_{light}, N_{c,i}, and N_{light,i}

$$hessian matrix = \begin{bmatrix} \frac{\partial^2 \log(l)}{\partial S_g \partial S_c} & \frac{\partial^2 \log(l)}{\partial S_g \partial S_b} & \frac{\partial^2 \log(l)}{\partial S_g \partial S_g} \\ \frac{\partial^2 \log(l)}{\partial S_b \partial S_c} & \frac{\partial^2 \log(l)}{\partial S_b \partial S_b} & \frac{\partial^2 \log(l)}{\partial S_b \partial S_g} \\ \frac{\partial^2 \log(l)}{\partial S_c \partial S_c} & \frac{\partial^2 \log(l)}{\partial S_c \partial S_b} & \frac{\partial^2 \log(l)}{\partial S_c \partial S_g} \end{bmatrix}$$

- The error covariance is obtained from the hessian matrix.
- The relative accuracy of signal strength is the square roots of the diagonal elements of the covariance matrix, tt is 0.49%/5.75%/1.82% for vvHbb/cc/gg.

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

key performance : flavor tagging

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

Э

changing flavor tagging performance :

 $\begin{array}{l} & \textit{non flavor tagging} \rightarrow \textit{perfect flavor tagging} \\ & \textit{the changing procedure of flavor tagging performance matrix :} \\ & \textit{temp matrix} = \frac{x - trace_l}{trace_T - trace_l} \cdot (T - l) + l \qquad (trace_l \leq x \leq trace_T) \\ & \text{T : matrix with perfect flavor tagging} \\ & \text{I : matrix with non flavor tagging} \\ & \textit{trace}_l, \textit{trace}_T : \textit{the trace of matrix l and T} \end{array}$

The x value and flavor tagging performance matrix have a one to one relation.

relative accuracy (%)	ννHbb	ννΗϲ̄	ννHgg
cut based flavor tagging	0.49	5.75	1.82
perfect flavor tagging	0.48	3.53	1.61

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

3

<ロト < (回) < ((u)) < (

$qqH(H \rightarrow b\bar{b}, H \rightarrow c\bar{c}, H \rightarrow gg)$ accuracy measurement

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

- I Finding the full hadronic samples from all samples.
- 2 Finding 4-quark samples

from the full hadronic samples.

A B > A B > A B > B = B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

③ Finding $ZH(Z \rightarrow q\bar{q}, H \rightarrow q\bar{q})$

from 4-quark samples.

Firstly, finding the full hadronic samples from all samples.

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

ヨト イヨト ニヨ

Secondly, finding 4-quark samples from the full hadronic samples.

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

つへで 21/45

 $\exists \rightarrow$

I

ヨトーイ

< □ > < A >

Thirdly, finding $ZH(Z \to q\bar{q}, H \to q\bar{q})$ from 4-quark samples. After finding 4-quark samples, the method of maximize $\chi^2 = \frac{(M_{12}-M_{B1})^2}{\sigma_{B1}^2} + \frac{(M_{34}-M_{B2})^2}{\sigma_{B2}^2}$ can be used to pair four jets into two di-jet systems.

Then a circle can be used to find ZH events.

クへで 23/45

∃⇒

Correlation Matrix (signal)

イロト イポト イヨト イヨト

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

つへで 24/45

I

the cut chain of first three stages shown in the following table :

	qqHqq	2f	SW	SZ	ww	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}(\%)$
total	527488	8.01 <i>E</i> 8	1.95 <i>E</i> 7	9.07 <i>E</i> 6	5.08E7	6.39E6	2.18 <i>E</i> 7	613008	5.71
multiplicity	527488	3.04 <i>E</i> 8	1.46E7	3.37 <i>E</i> 6	4.85E7	6.00E6	1.81 <i>E</i> 7	577930	3.77
leadLepEn	527036	2, 98E8	6.76E6	2.44 <i>E</i> 6	3.93E7	5.40E6	1.79E7	531411	3.65
€ (0, 59) visEn	510731	1.21 <i>E</i> 8	1.29 <i>E</i> 6	551105	2.14E7	3.06E6	1.71E7	180571	2.52
€ (199, 278) leadNeuEn	509623	5.68 <i>E</i> 7	716161	168030	2.04E7	2.93E6	1.65 <i>E</i> 7	176387	1.94
€ (0, 57) thrust	460535	7.81 <i>E</i> 6	473732	132126	1.88E7	2.60E6	1.54 <i>E</i> 7	167863	1.47
$\in (0, 0.86)$ $-log(Y_{34})$ $\in (0, 5, 8875)$	451468	4.90 <i>E</i> 6	181432	119836	1.74E7	2.40E6	1.45 <i>E</i> 7	165961	1.40
$\frac{E(0, 5.0075)}{HiggsJetsA} \in (2.18, 2\pi)$	326207	2.83E6	110156	58613	4.54E6	870276	3.74 <i>E</i> 6	96560	1.08
ZJetsA ∈ $(1.97, 2π)$	279030	1.37 <i>E</i> 6	33491	37101	2.39E6	496611	2.00 <i>E</i> 6	74005	0.93
ZHiggsA ∈ (2.32, 2π)	274530	1.32 <i>E</i> 6	17026	33847	2.28E6	468340	1.91 <i>E</i> 6	69620	0.92
circle	268271	1.20E6	10193	31567	2.13E6	424514	1.79E6	65434	0.90
BDT ∈ (0.02, 1)	192278	378300	40	307	271436	141446	244126	30022	0.57

・ロ・・中・・中・・日・・日・

optimized matrix

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

୬ < ୯ 26/45

1

ං 27/45

relative accuracy (%)	qqHbb	qqHcc	qqHgg
cut based flavor tagging	0.35	7.22	3.79
perfect flavor tagging	0.26	3.48	1.41

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

Ξ

<ロト < (回) < ((u)) < (

key performance : color singlet identification (i.e. jet clustering and jet matching)

A B > A B > A B > B = B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

color singlet identification

For di-boson event, there are two MC truth bosons and two di-jet systems, the variable $\alpha_i = angle(di - jet system_i, truth boson_i)$, (i = 1, 2) is used to characterize the performance of jet clustering and jet matching.

the α variable is just a cheated variable used to characterize the performance of color singlet identification

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

(ロト (同ト (ヨト (ヨト

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

・ シック・ ヨー 《ヨト 《ヨト 《 国 ト 《 国

31/45

The distribution of $(log(\alpha_1) + 3)^2 + (log(\alpha_2) + 3)^2$ for the samples of $e^+e^- \rightarrow W^+W^- \rightarrow 4$ quarks, the red line corresponds to all samples, and the blue line corresponds to that after the event selection process.

Summary :

The total signal strength of H → bb̄, cc̄, gg can be measured to a relative accuracy of 0.27%/3.82%/1.52%, combining all four different channels of μμH, eeH, vvH and qqH.

Z decay mode	H → bb	H → cc	$H \rightarrow gg$
$Z \rightarrow e^+ e^-$	1.57%	14.43%	10.31%
$Z \rightarrow \mu^+ \mu^-$	1.06%	10.16%	5.23%
$Z \rightarrow q\bar{q}$	0.35%	7.22%	3.79%
$Z \rightarrow \nu \bar{\nu}$	0.49%	5.35%	1.77%
combination	0.27%	3.82%	1.52%

The flavor tagging and color singlet identification (CSI) are the critical performances for these benchmarks. Their impact on the anticipated physics reach is evaluated.

- for vvH channel
 - The flavor tagging is critical for the νν̄H(H → bb̄/cc̄/gg) measurement. Using an ideal flavor tagging, the anticipated accuracy could be improved by 2%/52%/10%.
- for qqH channel
 - With perfect flavor tagging, the anticipated accuracy of $q\bar{q}H(H \rightarrow b\bar{b}/c\bar{c}/gg)$ could be improved by 35%/107%/169%.
 - If we can quantify the CSI performance and select the events with good CSI performance, the qqH(H → bb/cc/gg) accuracy can be improved by 6%/65%/82%.
- A good color singlet identification, or even a reliable color singlet identification performance evaluator at reconstruction level, is highly appreciated.

https://arxiv.org/abs/2203.01469

 \equiv

• □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thanks !

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

୬ < (~ 34/45

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Backup

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

প ৭ ে 35/45

1

< D > < B > < E > < E >

Z decay mode	$H \rightarrow b \bar{b}$	H → c̄c	$H \rightarrow gg$	scenario
CEPC	0.27%	3.91%	1.37%	240GeV, 5600 <i>fb</i> ⁻¹
CEPC CDR	0.3%	3.1%	1.2%	240GeV, 5600 <i>fb</i> ⁻¹
ILC	1.0%	6.02%	8.5%	250 GeV, 250 <i>fb</i> ^{—1}
FCC	0.3%	2.2%	1.9%	240 GeV, 5000 <i>fb</i> ⁻¹

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

<□> < @> < E> < E> E 9Q ()

ILC result

Eur. Phys. J. C (2013) 73:2343 DOI 10.1140/epjc/s10052-013-2343-8 THE EUROPEAN PHYSICAL JOURNAL C

Special Article - Tools for Experiment and Theory

A study of measurement precision of the Higgs boson branching ratios at the International Linear Collider

Hiroaki Ono^{1,a}, Akiya Miyamoto²

¹School of Life Dentistry at Niigata, Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan ²High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Japan

Table 1 Summary of the $v\bar{v}H$ ch	annel background reduction	issuming <i>P</i>	$^{2} = 250 \text{ fb}^{-1} \text{ wi}$	th $P(e^-, e^+) = (-0.8, +0.3)$		CM energy	250 GeV			350 GeV
CM energy	250 GeV			350 GeV		Cut names	Condition	Sig.	Bkg.	Condition
Cut names	Condition	Sig.	Bkg.	Condition		Generated		52507	45904900	
Generated		19360	44827100			X ²	$\chi^2 < 10$	32447	2608980	$\chi^2 < 10$
Missing mass	$80 < M_{miss} < 140~{\rm GeV}$	15466	6214050	$50 < M_{miss} < 240 { m GeV}$		# of charged tracks	$N_{chd} > 4$	25281	1120950	$N_{chd} > 4$
Transverse visible momentum	$20 < P_T < 70 \text{ GeV}$	13727	549340	$10 < P_T < 140 \text{ GeV}$		Y ₃₄ value	$-\log(Y_{34}) > 2.7$	25065	1002125	$-\log(Y_{34}) > 2.7$
Longitudinal visible momentum	$P_L < 60 \text{ GeV}$	13342	392401	$P_L < 130 \text{ GeV}$		thrust	thrust < 0.9	24688	935950	thrust < 0.85
# of charged tracks	$N_{chd} > 10$	12936	374877	$N_{cbd} > 10$		thrust angle	$ \cos \theta_{thrust} < 0.9$	21892	696201	$ \cos \theta_{thran} < 0.9$
Maximum track momentum	$P_{max} < 30 \text{ GeV}$	11743	205038	$P_{max} < 60 \text{ GeV}$		Higgs jets angle	$105^{\circ} < \theta_H < 160^{\circ}$	20062	622143	$70^\circ < \theta_H < 120^\circ$
Y ₂₃ value	$Y_{23} < 0.02$	7775	74439	$Y_{23} < 0.02$		Z di-jet mass	$80 < M_Z < 100 \text{GeV}$	16359	411863	$80 < M_Z < 100 \text{ GeV}$
Y ₁₂ value	$0.2 < Y_{12} < 0.8$	7438	62584	$0.2 < Y_{12} < 0.8$		H di-jet mass	$105 < M_H < 130 \text{ GeV}$	16359	411863	$105 < M_H < 130 \text{ GeV}$
Di-jet mass	$100 < M_{jj} < 130 {\rm GeV}$	6691	19061	$100 < M_{jj} < 130 \text{ GeV}$		Likelihood ratio	LR > 0.375	13726	166807	LR > 0.15
Likelihood ratio	LR > 0.165	6293	10940	LR > 0.395		Significance (Efficiency)	$S/\sqrt{S+B}$	32.3 (26.	1%)	$S/\sqrt{S+B}$
Significance (Efficiency)	$S/\sqrt{S+B}$	47.9 (32.	5%)	$S/\sqrt{S+B}$						
		-		Higgs Mass	$H \rightarrow b \bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$			
		-	CEPC	125 GeV	57.7%	2.91%	8.57%			
		-	ILC	120 GeV	65.7%	3.6%	5.5%			

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The $Higgs \rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

Table 2 Summary of $q\bar{q}H$ channel background reduction assuming $\mathscr{L} = 250 \text{ fb}^{-1}$ with $P(e^-, e^+) = (-0.8, +0.3)$

	ILC	CEPC
luminosity	250fb ⁻¹	5600fb ⁻¹
polarization	ep(-80%+30%)	
cross-section		
total events		
Higgs Mass	120 GeV	125
$H \rightarrow b\bar{b}$	65.36%	57.9%
$H \rightarrow c\bar{c}$	3.244%	2.87%
$H \rightarrow gg$	8.409%	8.17%

ννΗ	ILC	CEPC
total events	250fb ⁻¹	5600fb ⁻¹
before BDT	ep(-80%+30%)	
after BDT		

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

38/45

<□> < @> < E> < E> E 9Q ()

FCCee result

Table 1.1. Relative statistical uncertainty on $\sigma_{HZ} \times BR(H \to XX)$ and $\sigma_{\nu\bar{\nu}H} \times BR(H \to XX)$, as expected from the FCC-ee data, obtained from a fast simulation of the CLD detector and consolidated with extrapolations from full simulations of similar linear-collider detectors (SiD and CLIC).

\sqrt{s} (GeV)	2	40	3	65
Luminosity (ab^{-1})	5		1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}$ H	HZ	$\nu\overline{\nu}$ H
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10
$H \rightarrow gg$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$H \rightarrow ZZ$	± 4.4		± 12	± 10
$H \rightarrow \tau \tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		±18	± 22
$H \rightarrow \mu^+ \mu^-$	±19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	

Notes. All numbers indicate 68% CL intervals, except for the 95% CL sensitivity in the last line. The accuracies expected with 5 ab^{-1} at 240 GeV are given in the middle column, and those expected with 1.5 ab^{-1} at $\sqrt{s} = 365 \text{ GeV}$ are displayed in the last column.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへで

CEPC CDR result

Table 6. Expected relative precision on $\sigma(ZH) \times BR$ for the $H \rightarrow b\bar{b}, c\bar{c}$ and gg decays from a CEPC dataset of $5.6 ab^{-1}$.

Z decay mode	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$
$Z \rightarrow e^+ e^-$	1.3%	12.8%	6.8%
$Z \to \mu^+ \mu^-$	1.0%	9.4%	4.9%
$Z \rightarrow q \bar{q}$	0.5%	10.6%	3.5%
$Z\to \nu\bar\nu$	0.4%	3.7%	1.4%
combination	0.3%	3.1%	1.2%

Z decay mode	$H \rightarrow b\bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$
$Z \rightarrow e^+e^-$	1.6%	14.7%	10.5%
$Z \rightarrow \mu^+ \mu^-$	1.1%	10.5%	5.4%
$Z \rightarrow q\bar{q}$	0.34%	5.58%	1.91%
$Z \rightarrow \nu \bar{\nu}$	0.48%	5.92%	1.95%
combination	0.26%	3.67%	1.31%

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

The BDT was used to identify $\nu\nu H(H \rightarrow b\bar{b}, H \rightarrow c\bar{c}, H \rightarrow gg)$.

- # of final state particles
- visible energy of final state particles
- leading lepton energy, leading neutral energy
- thrust, Y23
- the transverse momentum of all final state particles
- the longitudinal momentum of all final state particles
- the maximum transverse momentum among final state particles

- the angle of two jets
- # of charge particles
- visible mass
- recoil mass of final state particles
- the b-likeness of each jet
- the b-likeness of each jet
- the energy difference of two hemispheres

BDT with different input variables for $\nu\nu Hc\bar{c}$

b/c-likeness

7.39% with b/c-likeness & jets 4-momentum

6.39% with b/c-likeness & jets 4-momentum & cut variables

イロト イポト イヨト イヨト

with different BDT cut value :

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

୬ < ୍ 43/45

Э

see relative accuracy as optimization target

bb

сс

Yongfeng Zhu advisor : Manqi Ruan (UCAS) The Higgs $\rightarrow b\bar{b}, c\bar{c}, gg$ measuremnet at CEPC & (

つへで 44/45

∃⇒

Image: A math the second se

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●