Snowmass status on Higgs + EW SMEFT Fits

Jiayin Gu (顾嘉荫)

Fudan University

Joint Workshop of the CEPC Physics, Software and New Detector Concept May 23, 2022

On behalf of the EF04 SMEFT global fit team: Jorge de Blas, Yong Du, Christophe Grojean, Jiayin Gu, Víctor Miralles, Michael Peskin, Junping Tian, Marcel Vos, Eleni Vryonidou

Jiayin Gu (顾嘉荫)

 $\blacktriangleright \ \ \text{Build large colliders} \rightarrow \text{go to high energy} \rightarrow \text{discover new particles!}$

Higgs and nothing else?

What's next?

- Build an even larger collider ($\sim 100 \,\text{TeV}$)?
- No guaranteed discovery!

Jiayin Gu (顾嘉荫)

■ Build large colliders → go to high energy → discover new particles!

do precision measurements \rightarrow discover new physics indirectly!

Higgs and nothing else?

What's next?

- ▶ Build an even larger collider (~ 100 TeV)?
- No guaranteed discovery!
- Higgs factory! (A lepton collider at $\sqrt{s} \sim 240-250$ GeV or above.)
- SMEFT (model independent approach)

Why lepton colliders?

Higgs (and Z, W, top) factory!

- Large statistics, clean environment precise measurements!
- EFT is good for lepton colliders.
 - A systematic parameterization of Higgs (and other) couplings.
- Lepton colliders are also good for EFT!
 - ► High precision ⇒ E ≪ Λ Ideal for EFT studies!
 - LHC is built for discovery, but

Why lepton colliders?

Higgs (and Z, W, top) factory!

- Large statistics, clean environment precise measurements!
- EFT is good for lepton colliders.
 - A systematic parameterization of Higgs (and other) couplings.
- Lepton colliders are also good for EFT!
 - ► High precision ⇒ E ≪ Λ Ideal for EFT studies!
 - LHC is built for discovery, but
- **Energy** *vs.* **Precision**
 - Poor measurements at the high energy tails lead to problems in the interpretation of EFT...

Jiayin Gu (顾嘉荫)

Fudan University

A global global fit with all measurements to all operator coefficients?
 Not there yet!

- ► Four parts:
 - EW + Higgs (this talk)
 - 4-fermion processes (Off Z-pole $e^+e^- \rightarrow \bar{f}f$)
 - CP-violating effects
 - Top (see Víctor Miralles's talk tomorrow)
- EW + Higgs
 - Based on [1905.03764] ECFA Higgs study, [1907.04311] de Blas, Durieux, Grojean, Gu, Paul.
 - What's new?

What's new?

- ▶ Diboson ($e^+e^- \rightarrow WW$, $pp \rightarrow WW/WZ$)
 - [1905.03764] (ECFA study):
 - ▶ LEP $e^+e^- \rightarrow WW$ + some future $e^+e^- \rightarrow WW$ (depending on official inputs)
 - [1907.04311]:
 - ► HL-LHC pp → WW/WZ ([1810.05149] Grojean, Montull, Riembau)
 - $e^+e^- \rightarrow WW$, semi-leptonic channel, 50% selection efficiency, optimal observable analysis
 - Now:
 - Same as [1907.04311], but
 - ▶ with all decay channels for $e^+e^- \rightarrow WW$, removed the 50% efficiency factor, and
 - applied realistic cuts on lepton/jets acceptance as well as simple detector smearing. (checked to have small impact, to be fully implemented soon)

Z factories

- Consistent estimations of systematic (theory) error for all colliders.
- Previous large differences in R_b, A_b between ILC and FCC-ee are now resolved.
- Updated run scenarios / inputs.

Scenarios

- $\label{eq:constraint} \begin{array}{ll} \bullet & \mbox{Z-pole}\; [100\;{\rm ab}^{-1}]\,, \\ & \mbox{240}\;\mbox{GeV}\; [20\;{\rm ab}^{-1}]\,, \\ & \mbox{360}\;\mbox{GeV}\; [1\;{\rm ab}^{-1}] \end{array}$
- ► FCC-ee

► CFPC

- $\label{eq:2-pole} \begin{array}{l} \mbox{Z-pole} \ [150 \ ab^{-1}] \ , & \mbox{WW threshold} \ [10 \ ab^{-1}] \ , \\ \mbox{240 GeV} \ [5 \ ab^{-1}] \ , & \mbox{365 GeV} \ [1.5 \ ab^{-1}] \end{array}$
- **ILC** $P(e^-, e^+) = (\mp 0.8, \pm 0.3) ((\mp 0.8, \pm 0.2) \text{ for 1TeV})$
 - $\blacktriangleright~250~GeV~[2~{\rm ab}^{-1}]$, $~~350~GeV~[0.2~{\rm ab}^{-1}]$, $~~500~GeV~[4~{\rm ab}^{-1}]$, $~~1~TeV~[8~{\rm ab}^{-1}]$, (optional) Giga-Z
- CLIC $P(e^-, e^+) = (\mp 0.8, \pm 0.2)$
 - ▶ $380 \, \text{GeV} \, [1 \, \text{ab}^{-1}]$, $1.5 \, \text{TeV} \, [2.5 \, \text{ab}^{-1}]$, $3 \, \text{TeV} \, [5 \, \text{ab}^{-1}]$,
- Muon collider
 - ► 3 TeV $[1 \text{ ab}^{-1}]$ or 10 TeV $[10 \text{ ab}^{-1}]$ or 10 TeV $[10 \text{ ab}^{-1}]$ + 125 GeV $[20 \text{ fb}^{-1}]$,

Global fit

- Global fit
 - Usually ~ 20-30 parameters (instead of 2499) if we focus on Higgs and electroweak measurements. (29 or 30 in our case)
- Limits on all the $\frac{c_i^{(6)}}{\Lambda^2}$
 - Results depend on operator bases, conventions, ...
- Present the results in terms of effective couplings ([arXiv:1708.08912], [arXiv:1708.09079], Peskin et al.)
 - ▶ g(hZZ), g(hWW) couplings have multiple contributions: $hZ^{\mu}Z_{\mu}$, $hZ^{\mu\nu}Z_{\mu\nu}$... defined as: $g(hZZ) \propto \sqrt{\Gamma(h \rightarrow ZZ)}$, $g(hWW) \propto \sqrt{\Gamma(h \rightarrow WW)}$.
- Present the results with some fancy bar plots!
- Also provide full likelihood / χ^2 / invariance covariance matrix?
 - All bases are equal...

$e^+e^- ightarrow WW$ with Optimal Observables

- TGCs (and additional EFT parameters) are sensitive to the differential distributions!
 - One could do a fit to the binned distributions of all angles.
 - Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.
- What are optimal observables?

(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$rac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} \, g_i , \qquad c_{ij}^{-1} = \int d\Omega rac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

The optimal observables are given by O_i = S_{1,i}/S₀, and are functions of the 5 angles.

[arXiv:1907.04311] de Blas, Durieux, Grojean, JG, Paul

Fudan University

Jiayin Gu (顾嘉荫)

Updates on the WW analysis with Optimal Observables

- How well can we do it in practice?
 - detector acceptance, measurement uncertainties, ...
- What we have checked
 - detector acceptance
 (|cos θ| < 0.9 for jets, < 0.95 for leptons)
 - some smearing (production polar angle only, $\Delta = 0.1$)
 - ► ILC: marginalizing over total rate (δN) and effective beam polarization (δP_{eff})
- Constructing full EFT likelihood and feed it to the global fit. (For illustration, only showing the 3-aTGC fit results here.)
- Further verifications (by experimentalists) are needed.
- (A machine-learning analysis eventually?)

Fudan University

Jiayin Gu (顾嘉荫)

Results

precision reach on effective couplings from SMEFT global fit

Jiayin Gu (顾嘉荫)

Fudan University

What's next? (practically speaking)

- Snowmass Timeline
 - preliminary report by end of May,
 - (almost) final results by Snowmass summer meeting,
 - final report around October.
- Missing inputs to be completed
 - CEPC Z-pole (to be updated from the whitepaper),
 - \triangleright R_s and $A_s/A_{\rm FB}^s$,
 - HL-LHC $pp \rightarrow WW/WZ$ global SMEFT analysis.
- More improvements
 - Lift the U(2) constraints on 1&2 gen. quarks? (pp → l⁺l⁻) [2103.12074] Bresó-Pla, Falkowski, González-Alonso
 - Implement theory errors?
 - One-loop) triple Higgs coupling (Top loops as well?)
- Higgs+EW+Top, more loop contributions, dim-8 operators, future hadron colliders ...
 - The next snowmass, maybe...

Jiayin Gu (顾嘉荫)

backup slides

Jiayin Gu (顾嘉荫

Fudan University

Higgs inputs

HL-LHC	3 ab + A			ILAS + 0		5	
Prod.	ggH		VBF	WH		ZH	ttH
σ			-			-	-
$\sigma \times BR_{bb}$	19.1	19.1		8.3		4.6	10.2
$\sigma \times BR_{CC}$	-		-			-	-
$\sigma \times BR_{gg}$	-		-			-	-
$\sigma \times BR_{77}$	2.5		9.5	32.1		58.3	15.2
$\sigma \times BR_{WW}$	2.5		5.5	9.9		12.8	6.6
$\sigma \times BR_{\tau \tau}$	4.5		3.9			-	10.2
$\sigma \times BR_{\gamma\gamma}$	2.5		7.9	9.9		13.2	5.9
$\sigma \times BR_{\gamma Z}$	24.4		51.2			-	-
$\sigma \times BR_{\mu\mu}$	11.1		30.7			-	-
$\sigma \times BR_{inv}$	-		2.5			-	-
$\Delta m_H^{m_H}$	10-20 Me	V	-			-	-
		1.			_	1	
ILC250	0.9ab + (-		0.8,+0.3)	0.9ab)	+ (+0.8	3,-0.3)
Prod.	ZH		$\nu\nu H$	ZH		ν	νΗ
σ	1.07		-	1.07			-
$\sigma \times BR_{bb}$	0.714		4.27	0.714	Ł.	1	7.4
$\sigma \times BR_{CC}$	4.38		-	4.38			-
$\sigma \times BR_{gg}$	3.69		-	3.69			-
$\sigma \times BR_{77}$	9.49		-	9.49			-
$\sigma \times BR_{WW}$	2.43		-	2.43			-
$\sigma \times BR_{\tau \tau}$	1.7		-	1.7			-
$\sigma \times BR_{\gamma\gamma}$	17.9		-	17.9			-
$\sigma \times BR_{\gamma Z}$	63		-	59			-
$\sigma \times BR_{\mu\mu}$	37.9		-	37.9			-
$\sigma \times BB_{inv}$	0.336		-	0.277	,		-

	FCCee24	10 5ab ^{— 1}	CEPC2	240 20ab ^{- 1}	
Prod.	ZH	ννΗ	ZH	ννΗ	
σ	0.5(0.537)	-	0.26	-	
$\sigma \times BR_{bb}$	0.3(0.380)	3.1(2.78)	0.14	1.59	
$\sigma \times BR_{CC}$	2.2(2.08)	-	2.02	-	
$\sigma \times BR_{qq}$	1.9(1.75)	-	0.81	-	
$\sigma \times BR_{77}$	4.4(4.49)	-	4.17	-	
$\sigma \times BR_{WW}$	1.2(1.16)	-	0.53	-	
$\sigma \times BR_{\tau \tau}$	0.9(0.822)	-	0.42	-	
$\sigma \times BR_{\gamma\gamma}$	9(8.47)	-	3.02	-	
$\sigma \times BR_{\gamma Z}$	(17*)	-	8.5	-	
$\sigma \times BR_{\mu\mu}$	19(17.9)	-	6.36	-	
$\sigma \times BR_{inv.}$	0.3(0.226)	-	0.07	-	
	1			1	
CLIC380	0.5 ab 1	(-0.8,0)	0.5 ab	o (+0.8,0)	
Prod.	ZH	ννΗ	ZH	ννΗ	
σ	1.5(1.43)	-	1.8(1.43	3) -	
$\sigma \times BR_{bb}$	0.81(1.2)	1.4(1.47)	0.92(1.2	2) 4.1(4.4)	
$\sigma \times BR_{CC}$	13(8.7)	19(15.3)	15(8.7)	24(46)	
$\sigma \times BR_{gg}$	5.7(6.6)	3.3(6.2)	6.5(6.6)) 20(18.8)	
$\sigma \times BR_{ZZ}$	(19.7)	(16.1)	(19.7)	(46)	
$\sigma \times BR_{WW}$	5.1(4.4)	(4.6)	(4.4)	(14)	
$\sigma \times BR_{\tau \tau}$	5.9(3.2)	(12.9)	6.6(3.2)) (39)	
$\sigma imes BR_{\gamma\gamma}$	(31)	(36)	(31)	(108)	
$\sigma \times BR_{\mu\mu}$	(69)	(129)	(69)	(129)	
$\sigma \times BR_{inv}$	0.57(0.68)	-	0.64(0.6	4) -	

- Some important inputs are scaled from other colliders.
- Important correlations are still missing?

Jiayin Gu (顾嘉荫)

	1.5 ab ⁻¹ F	CC-ee365	1.0 ab - 1 CEPC360		
Prod.	ZH	ννΗ	ZH	ννΗ	
σ	0.9(0.84)	-	1.4(1.02)	-	
$\sigma \times BR_{bb}$	0.5(0.71)	0.9(1.14)	0.90(0.86)	1.1(1.39)	
$\sigma \times BR_{CC}$	6.5(5.0)	10(11.9)	8.8(6.1)	16(14.5)	
$\sigma \times BR_{gg}$	3.5(3.8)	4.5(4.8)	3.4(4.7)	4.5(5.9)	
$\sigma \times BR_{ZZ}$	12(11.4)	10(12.5)	20(13.9)	21(15.3)	
$\sigma \times BR_{WW}$	2.6(2.55)	(3.6)	2.8(3.12)	4.4(4.4)	
$\sigma \times BR_{\tau \tau}$	1.8(1.83)	8(10)	2.1(2.24)	4.2(12.2)	
$\sigma \times BR_{\gamma\gamma}$	18(17.7)	22(28.1)	11(21.7)	16(34.4)	
$\sigma \times BR_{\mu\mu}$	40(40)	(100)	41(48)	57(123)	
$\sigma \times BR_{inv.}$	0.60(0.42)	-	(0.49)	-	

ILC500	1.6 ab ⁻¹ (-0.8,+0.3)		1.6 ab ⁻¹ (+0.8,-0.3	
Prod.	ZH	ννΗ	ZH	ννΗ
σ	1.67	-	1.67	-
$\sigma \times BR_{hh}$	1.01	0.42	1.01	1.52
$\sigma \times BR_{CC}$	7.1	3.48	7.1	14.2
$\sigma \times BR_{aa}$	5.9	2.3	5.9	9.5
$\sigma \times BR_{77}$	13.8	4.8	13.8	19
$\sigma \times BR_{WW}$	3.1	1.36	3.1	5.5
$\sigma \times BR_{\tau \tau}$	2.42	3.9	2.42	15.8
$\sigma \times BR_{\gamma\gamma}$	18.6	10.7	18.6	44
$\sigma \times BR_{\mu\mu}$	47	40	47	166
$\sigma \times BR_{inv.}$	0.83	-	0.60	-

ILC350	0.135 ab ⁻¹ (-0.8,+0.3)		0.045 a	ab^{-1} (+0.8,-0.3)
Prod.	ZH	ννΗ	ZH	ννΗ
σ	2.46	-	4.3	
$\sigma \times BR_{hh}$	2.05	2.46	3.5	17.7
$\sigma \times BR_{CC}$	15	25.9	25.9	186
$\sigma \times BR_{aa}$	11.4	10.5	19.8	75
$\sigma \times BR_{77}$	34	27.2	59	191
$\sigma \times BR_{WW}$	7.6	7.8	13.2	57
$\sigma \times BR_{\tau\tau}$	5.5	21.8	9.4	156
$\sigma \times BR_{\gamma\gamma}$	53	61	92	424
$\sigma \times BR_{\mu\mu}$	118	218	205	1580
$\sigma \times BR_{inv}$	1.15	-	1.83	-

ILC1000	3.2 ab ⁻¹ (-0.8,+0.2)	3.2 ab ⁻¹ (+0.8,-0.2)
Prod.	ννΗ	ννΗ
$\sigma \times BR_{bb}$	0.32	1.0
$\sigma \times BR_{CC}$	1.7	6.4
$\sigma \times BR_{qq}$	1.3	4.7
$\sigma \times BR_{77}$	2.3	8.4
$\sigma \times BR_{WW}$	0.91	3.3
$\sigma \times BR_{\tau \tau}$	1.7	6.4
$\sigma \times BR_{\gamma\gamma}$	4.8	17
$\sigma \times BR_{\mu\mu}$	17	64

Jiayin Gu (顾嘉荫)

CLIC1500	2 ab ⁻¹ (-0.8,0)	0.5 ab ⁻¹ (+0.8,0)
Prod.	ννΗ	ννΗ
$\sigma \times BR_{hh}$	0.25	1.5
$\sigma \times BR_{CC}$	3.9	24
$\sigma \times BR_{qq}$	3.3	20
$\sigma \times BR_{77}$	3.6	22
$\sigma \times BR_{WW}$	0.67	4.0
$\sigma \times BR_{\tau\tau}$	2.8	17
$\sigma \times BR_{\gamma\gamma}$	10	60
$\sigma \times BR_{\gamma Z}$	28	170
$\sigma \times BR_{\mu\mu}$	24	150

CLIC3000	4 ab ⁻¹ (-0.8,0)	1 ab ⁻¹ (+0.8,0)
Prod.	ννΗ	ννΗ
$\sigma \times BR_{hh}$	0.17	1.0
$\sigma \times BR_{CC}$	3.7	22
$\sigma \times BR_{qq}$	2.3	14
$\sigma \times BR_{77}$	2.1	13
$\sigma \times BR_{WW}$	0.33	2.0
$\sigma \times BR_{\tau\tau}$	2.3	14
$\sigma \times BR_{\gamma\gamma}$	5.0	30
$\sigma \times BR_{\gamma Z}$	16	95
$\sigma \times BR_{\mu\mu}$	13	80

Jiayin Gu (顾嘉荫)

EW inputs

EWPO Uncertainties	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta \alpha_{OED}^{-1}$	0.0178*		$3.8(1.2) \times 10^{-3}$	0.0178*	
Δm_W (/MeV)	2.4(0.5)		0.25(0.3)	1	
Δm_Z (/MeV)	2.1*		0.004(0.1)	0.1	2.1*
Δm_H (/MeV)	14		2.5(2)	5.9	78
$\Delta \Gamma_W$ (/MeV)	2		1.2(0.3)	2.8	
$\Delta\Gamma_Z$ (/MeV)	2.3*	(1)	0.025(0.004)	0.025	2.3*
$\Delta A_{e}(\times 10^5)$	14(4.5)	1.5(8)	0.7(2)	1.5	64
$\Delta A_{\mu}(\times 10^5)$	82(4.5)	3(8)	2.3(2.2)	45	400
$\Delta A_{\tau}(imes 10^5)$	86(4.5)	3(8)	0.5(20)	7	570
$\Delta A_b(\times 10^5)$	53(35)	9(51)	2.4(21)	22	380
$\Delta A_{c}(\times 10^{5})$	140(25)	20(50)	20(15)	200	200
$\Delta \sigma_{had}$ (/pb)			4	5	37*
$\delta R_{e}(\times 10^{3})$	1.1	0.54	0.3	0.6	2.7
$\delta R_{\mu}(\times 10^3)$	1.1	0.28	0.05	0.1	2.7
$\delta R_{\tau}(\times 10^3)$	1.1	0.45	0.1	0.2	6
$\delta R_b(\times 10^3)$	1.1	0.7	<0.3	0.2	1.8
$\delta R_{c}(\times 10^{3})$	5.0	3.0	1.5	1.1	5.6

- EWPO at future e^+e^- : statistical error (experimental systematic error). Δ (δ) stands for absolute (relative) uncertainty.
- Some CEPC inputs are still based on 1 month of data... (to be updated from the CEPC whitepaper)

Fit Results [arXiv:1907.04311] de Blas, Durieux, Grojean, JG, Paul

 Global fit of dim-6 operators at tree-level with Higgs and electroweak measurements.

 Correlations are also important!

Jiayin Gu (顾嘉荫)

"Full fit" projected on the Higgs couplings (and aTGCs)

[arXiv:1907.04311] de Blas, Durieux, Grojean, JG, Paul, see also Higgs@FutureColliders WG report

precision reach on effective couplings from full EFT global fit

- 28-parameter fit, projected on the Higgs couplings & aTGCs.
- Lepton colliders are combined with HL-LHC & LEP/SLD.
- The hZZ and hWW couplings are not independent!

Jiayin Gu (顾嘉荫)

Z-pole run is also important for Higgs couplings!

Jiayin Gu (顾嘉荫)

Fudan University

19

Reach on the (h)Vff couplings

- ► (*h*)*Zff* couplings are still best probed by future Z-pole runs.
- Higgs and diboson measurements at high energy (at linear colliders) are also sensitive to the (h)Zee couplings, but can not resolve them from other parameters.
- ► Linear colliders: Using radiative return $(e^+e^- \rightarrow Z\gamma)$ to measure *Z* observables at high energy?

$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} H^{2})^{2}$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}G_{\mu u}^{A}G^{A,\mu u}$
$\mathcal{O}_{WW}=g^2 \mathcal{H} ^2 W^a_{\mu u} W^{a,\mu u}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB}=g^{\prime2} H ^2B_{\mu u}B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{l}_L He_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W^{a u}_{\mu}W^{b}_{ u ho}W^{c ho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H) D^{\nu} W^{a}_{\mu\nu}$	$\mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overleftarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{WB} = gg' H^{\dagger}_{\mu\nu} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{H\ell} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_L \gamma^{\mu} \ell_L$
$\mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \overrightarrow{D_{\mu}} H)^{2}$	$\mathcal{O}'_{H\ell} = iH^{\dagger}\sigma^{a}\widetilde{D_{\mu}}H\bar{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma^\mu_\ell \ell_L) (\bar{\ell}_L \gamma_\mu \ell_L)$	$\mathcal{O}_{He} = i H^{\dagger} \overleftarrow{D_{\mu}} H \overline{e}_R \gamma^{\mu} e_R$
$\mathcal{O}_{Hq} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{u}_R \gamma^{\mu} u_R$
$\mathcal{O}_{Hq}^{\prime} = i H^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{q}_{L} \sigma^{a} \gamma^{\mu} q_{L}$	$\mathcal{O}_{Hd} = i H^{\dagger} \widetilde{D_{\mu}'} H \overline{d}_R \gamma^{\mu} d_R$

- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Reach on the scale of new physics

95% CL reach from the full EFT fit

- Reach on the scale of new physics Λ .
- Note: reach depends on the couplings c_i!

"Higgs effective coupling basis"

(+ deviations in W BR. δ_{m_W} is constrained very well by W mass measurements.)

$$\delta g_{1,Z}, \ \delta \kappa_{\gamma}, \ \lambda_{Z}, \ \delta g_{Z,L}^{ee}, \ \delta g_{Z,R}^{ee}, \ \delta g_{W}^{e\nu}, \ \delta_{m_{W}}$$

ILC parameterization (projective map to any EFT basis)

 $e, g_L, g_R, g_Z, g_W, \kappa_A, \kappa_Z, \lambda_A, \lambda_Z, BR$

• 2 nuisance variables δN , δP_{eff} for ILC

• $e^+e^- \rightarrow WW$ is also used to determine the effective luminosity and polarization.

$$\begin{array}{c} O^1_{\varphi q} \equiv \frac{y_2^2}{2} \quad \bar{q} \gamma^\mu q \quad \varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi, \qquad O_{uG} \equiv y_t g_s \quad \bar{q} T^A \sigma^{\mu\nu} u \quad \epsilon \varphi^* G^A_{\mu\nu}, \\ O^2_{\varphi q} \equiv \frac{y_2^2}{2} \quad \bar{q} \tau^I \gamma^\mu q \quad \varphi^{\dagger} i \overrightarrow{D}_{\mu}^I \varphi, \qquad O_{uW} \equiv y_t g_W \quad \bar{q} \tau^I \sigma^{\mu\nu} u \quad \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi u} \equiv \frac{y_2^2}{2} \quad \bar{u} \gamma^\mu u \quad \varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi, \qquad O_{dW} \equiv y_t g_W \quad \bar{q} \tau^I \sigma^{\mu\nu} d \quad \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi ud} \equiv \frac{y_2^2}{2} \quad \bar{u} \gamma^\mu d \quad \varphi^T \epsilon \, i D_{\mu} \varphi, \qquad O_{uB} \equiv y_t g_Y \quad \bar{q} \sigma^{\mu\nu} u \quad \epsilon \varphi^* B_{\mu\nu}, \\ O_{iq} \equiv \frac{1}{2} \quad \bar{q} \gamma_\mu q \quad \bar{l} \gamma^\mu l, \\ O_{iq} \equiv \frac{1}{2} \quad \bar{q} \gamma_\mu q \quad \bar{l} \gamma^\mu l, \\ O_{iu} \equiv \frac{1}{2} \quad \bar{u} \gamma_\mu u \quad \bar{l} \gamma^\mu l, \\ O_{eq} \equiv \frac{1}{2} \quad \bar{q} \gamma_\mu q \quad \bar{e} \gamma^\mu e, \\ O_{eu} \equiv \frac{1}{2} \quad \bar{u} \gamma_\mu u \quad \bar{e} \gamma^\mu e, \end{array}$$

- Also need to include top dipole interactions and *eett* contact interactions!
- Hard to resolve the top couplings from 4f interactions with just the 365 GeV run.
 - Can't really separate $e^+e^- \rightarrow Z/\gamma \rightarrow t\bar{t}$ from

$$e^+e^- \rightarrow Z' \rightarrow tt.$$

Is that a big deal?

Jiayin Gu (顾嘉荫)

Top operators in loops [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

- Higgs precision measurements have sensitivity to the top operators in the loops.
 - But it is challenging to discriminate many parameters in a global fit!
- HL-LHC helps, but a 360 or 365 GeV run is better.
- Indirect bounds on the top Yukawa coupling.

Jiayin Gu (顾嘉荫)

Top operators in loops [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

- $O_{tB} = (\bar{Q}\sigma^{\mu\nu}t) \tilde{\varphi}B_{\mu\nu} + h.c.$ is not very well constrained at the LHC, and it generates dipole interactions that contributes to the $h\gamma\gamma$ vertex.
- Deviations in $h\gamma\gamma$ coupling \Rightarrow run at $\sim 365 \text{ GeV}$ to confirm?

Jiayin Gu (顾嘉荫)

Fudan University

Triple Higgs coupling at one-loop order

[arXiv:1711.03978] Di Vita, Durieux, Grojean, JG, Liu, Panico, Riembau, Vantalon

$$\begin{split} & \kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{\rm SM}}, \\ & \delta \kappa_{\lambda} \equiv \kappa_{\lambda} - 1 = \mathbf{C}_{6} - \frac{3}{2}\mathbf{C}_{H}, \\ & \text{with } \mathcal{L} \supset -\frac{\mathbf{C}_{6}\lambda}{v^{2}} (H^{\dagger}H)^{3}. \end{split}$$

- One loop corrections to all Higgs couplings (production and decay).
- 240 GeV: hZ near threshold (more sensitive to δκ_λ)
- ▶ at 350-365 GeV:
 - WW fusion
 - hZ at a different energy
- h → WW*/ZZ* also have some discriminating power (but turned out to be not enough).

Jiayin Gu (顾嘉荫)

Triple Higgs coupling from EFT global fits

Runs at two different energies (240 GeV and 350/365 GeV) are needed to obtain good constraints on the triple Higgs coupling in a global fit!

- 240, 365 GeV are better than 250, 350 GeV.
- ▶ Impacts of Z-pole measurements are not negligible. (eeZ(h) contact interaction enters $e^+e^- \rightarrow hZ$.)

Fudan University

29

Snowmass status on Higgs + EW SMEFT Fits

Jiayin Gu (顾嘉荫)

Double-Higgs measurements ($e^+e^- \rightarrow Zhh \& e^+e^- \rightarrow \nu \bar{\nu}hh$) [arXiv:1711.03978]

- Destructive interference in $e^+e^- \rightarrow \nu \bar{\nu} hh!$ The square term is important.
- hh invariant mass distribution helps discriminate the "2nd solution."

Jiayin Gu (顾嘉荫)

Triple Higgs coupling from global fits [arXiv:1711.03978]

Jiayin Gu (顾嘉荫)

Fudan University

Higgs@FC WG September 2019

Jiayin Gu (顾嘉荫)