

CEPC Higgs Coupling in 240/360GeV

Kaili Zhang IHEP

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022

May. 23rd, 2022

Higgs@CEPC

With 100km tunnel, CEPC will collect 4M Higgs for 20iab data in 240GeV.

CEPC (evolving) object performance

With certain detector parameter and certain reconstruction algorithm, CEPC Higgs measurements are predictable.

Individual sub channels

Existing results:240GeV, 5.6iab

(240GeV,5.6ab ⁻¹)	CDR	2022.05
$\sigma(ZH)$	0.50%	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.27%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	3.8%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	1.5%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	7.9%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	5.7%
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	18%
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%	
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.24%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	
Width	2.8%	

See Yongfeng's for latest bb/cc/gg.

Related publication:					
$\sigma(ZH)$:	1601.05352;				
bb/cc/gg:	1905.12903/2203.01469;				
ττ:	1903.12327;				
Invisible:	2001.05912;				
ZZ:	2103.09633;				

Several channels improved since CDR published. Mostly from better analysis strategy.

All these results are based in (240GeV,5.6ab⁻¹).

Now, with the scenario upgrade, the new run will based in (240GeV 20ab⁻¹ + 360GeV 1ab⁻¹).

360GeV: Higher Energy Run

- 350~365GeV *tt* Run:
 - For Higgs: Larger vvH cross section; Benefit width measurement
 - More advantages for EW/Theoretical part;
 - Fcc-ee/ILC/CLIC all have similar plan
- benchmark: 1ab⁻¹ @ 360GeV
 - 360GeV saves 10% energy with respect to 365 GeV
 - With current lumi, ~5 years to collect 1iab data.
 - Also plan for threshold scan for top mass;

Fcc-ee has the plan for 0.2ab⁻¹ 350GeV Scan + 1.5ab⁻¹ 365GeV

Signal Cross Sections

- 240GeV:
 - ZH: 196.9; vvH: 6.2; interference: ~10% of vvH; about 318:10:1; (Z->vv : vvH = 6.4:1)
- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Total	203.6		159.0		
Total Events	4M		0.16M		

In total ~4M Higgs would be collected in CEPC 240+360. More fusion events, also eeH can not be ignored in 360GeV.

ZH/vvH interference already considered.

Major background cross sections

While 2fermion bkg and WW, ZZ bkg reduced, W/Z fusion and $t\bar{t}$ raise.

Generally, with larger phase space and smaller bkg cross sections, continuum background would reduce.

Processes are extrapolated to 360GeV in this ratio. Kinematic distributions are also scaled with phase space.

Extrapolations

Ideal model independent inclusive $Z \rightarrow \mu\mu: 0.92\% \rightarrow 1.72\%$

 $vvH \rightarrow bb: 240 \text{GeV}$

- 2d fit $M_{jj}^{reco} \& \cos \theta_{jj}$
- $vvH \rightarrow bb$ and $ZH \rightarrow bb$
 - Interference ~10% of vvH. (generally, 60: 1:10)
 - Add the interference term to vvH side currently;
 - $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -45%. (-34% in ILC(1708.08912))
- $\sigma(vvH) * Br(H \rightarrow bb)$: 3.0%;

- if fix ZH process, Initial $vvH \rightarrow bb$ uncertainty is 2.8%.
- if float ZH process, $vvH \rightarrow bb$ would be 3.4%.
- Need use other ZH processes to constrain ZH.

vvH->bb : 360 GeV, full sim

- Clear separation between ZH and vvH.
- Constrain from other ZH->bb(*ee*, $\mu\mu$, qq) considered.
- In current 1iab,
 - $\sigma(vvH) * Br(H \rightarrow bb): 1.10\%$
 - $\sigma(\mathbf{Z}H) * Br(\mathbf{H} \rightarrow \mathbf{bb}): 0.90\%$
 - share the anti-correlation -15.8%.
 - This measurement gives very excellent constrain for Higgs

width.

Combination Framework

- Easy for extrapolation
- Multiple observables for workspace
 - Mass spectrum, BDT output, Flavor tagging likeness
 - Apply multi dimensional fit if possible
- Input correlation considered
 - σ *Br + Correlation Matrix = Complete Input.
 - Anti-correlation from measurement;
 - Major form: Higgs yields overlap
 - Cannot be ignored for some crucial channel, like vvH & ZH, H->bb

12

Results in snowmass: 2205.08553

	240 GeV, 20 <i>ab</i> ⁻¹		360 GeV, 1 a		ab^{-1}
	ZH	vvH	ZH	vvH	eeH
any	0.26%		1.40%	١	١
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
Н→сс	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
H→WW	0.53%		2.80%	4.40%	6.50%
H→ZZ	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H \rightarrow \mu \mu$	6.36%		41%	57%	
$Br_{upper}(H \to inv.)$	0.07%		١	١	
$H \rightarrow Z\gamma$	8.50%		35%	١	
Width	1.	1.65%		1.10%	

Fcc:

\sqrt{s} (GeV)	\overline{s} (GeV) 240		365	
Luminosity (ab^{-1})	5	5	1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}\;H$
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10
$H \rightarrow gg$	± 1.9		± 3.5	± 4.5
$ H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$H \rightarrow ZZ$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$\mid \mathrm{H} ightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	

Generally, CEPC and Fcc-ee results are comparable in Higgs precision measurement.

For Higgs coupling, also similar performance could be expected.

κ framework

• Higgs coupling defined as:

$$\kappa_z^2 = \frac{g(HZZ)}{g_{SM}(HZZ)} = \frac{\sigma(ZH)}{\sigma_{SM}(ZH)} \quad ->0.5\%;$$

$$\sigma(vvH) * Br(H \rightarrow bb) \propto \frac{\kappa_w^2 * \kappa_b^2}{\Gamma_H}$$

We expect excellent κ_z measurement from $\sigma(ZH)$, and all other channel suffered from Higgs width. Extract width with branch ratio: Constrained 7- κ Keep width independent: 10 κ

Higgs width

- CEPC Higgs width is fitted in the 10κ framework.
- Adding one mass point would significantly improve the constrain.
 - Standalone 240GeV 20ab⁻¹ gives 1.65%, while 360GeV 1ab⁻¹ alone gives 3.65%.
 - These 2 points are independent.
 - Combined χ^2 fit gives:

Results not sensitive to the statistics for 360GeV run For Higgs, we do not need too much 360GeV events; But we do need it for the independent constrain.

 $\Delta(\Gamma_H) \approx 1.10\%$

As width in everywhere, width helps all kappas even better.

*: Here we do not have the assumption about the exotic decay. This treatment is different with Fcc-ee, which believes exotic Br could not <0. If we take this assumption, the model-dependent width precision would be even better.

κ : CEPC latest

- Compared to HL-LHC, lepton colliders 1-2 order better in Higgs coupling.
- Adding 360GeV will signifiantly improve κ results.

For kappa0 and kappa3 fit and the comparison among future colliders, see [de Blas, J. et al. arXiv:1905.03764]

Correlation Matrix

Direction of

Evolving Combination

- Good enough results, still a lot of to do
 - Many progress from Accelerator, Detector, and object performance since CDR didn't enter the combination yet.
 - Still need to understand the correlation
 - More powerful tools: HEPFit? Matrix method?
 - Far from the CEPC fully/ultimate potential. 4M Higgs!
 - Global optimization for combination needed in the beginning of study.

• Your effort would be appreciate!

Summary

- Latest CEPC Higgs combination, σ * Br and coupling results are shown.
- Extrapolation to 360GeV applied
 - 1.10% precision for width expected.

	240 Ge	V, 20 ab^{-1}	360 GeV, 1 a		ab^{-1}
	ZH	vvH	ZH	vvH	eeH
any	0.26%		1.40%	١	١
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
Н→сс	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
H→WW	0.53%		2.80%	4.40%	6.50%
H→ZZ	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H \rightarrow \gamma \gamma$	3.02%		11%	16%	
$H \rightarrow \mu \mu$	6.36%		41%	57%	
$Br_{upper}(H \rightarrow inv.)$	0.07%		١	١	
$H \rightarrow Z\gamma$	8.50%		35%	١	
Width	1.65%			1.10%	

Kaili

20

backups

$\sigma(ZH)$: H \rightarrow inclusive

- Possible by tagging higgs with recoil mass
- Zhenxing, arxiv:1601.05352
 - Z \rightarrow ee, 1.4%; Z \rightarrow µµ, 0.9%;
 - model independently
 - $Z \rightarrow qq$: 0.65%, by Janice
 - extrapolated from 1404.3164
 - Combined: 0.5%
- $\sigma(ZH)$ correlations

Table 3. Estimation of biases of σ_{ZH} caused by potential variances of the Higgs decay branching ratios.

Decay mode	$Bias(\times 10^{-4})$
$H \rightarrow b\bar{b}$	-0.10
$H \rightarrow WW$	+0.20
$H \rightarrow gg$	-0.18
$H \rightarrow \tau \tau$	+1.11
$H \rightarrow c\bar{c}$	+0.05
$H \rightarrow ZZ$	-1.85
$H \rightarrow \gamma \gamma$	+2.56
$H \rightarrow \gamma Z$	-2.08
$H \rightarrow inv.$	+5.75

Full hadronic jets: bb/cc/gg/WW/ZZ

- Heavily relies on jet clustering algorithm; Hard to separate.
- 3d template fit
 - Mass
 - Dijet's B likeness and C likeness
- (Z \rightarrow vv H \rightarrow bb excluded the vvH part)
- Still, WW/ZZ suffered from the huge ZH events
- Plan to apply categories like "STXS" to avoid the overlap.

Current combination didn't use the full hadronic W/Z and b/c/g correlation value. More study are needed to understand.

Scan	µ_bb	μ_сс	µ_gg	≥ 10000	
eeH	1.3%	13.5%	7.2%	Events / 0.8 0008	-
nmH	1.0%	9.5%	5.0%		
дqН	0.5%	11.1%	3.6%	6000	-
лvН	0.4%	3.8%	1.5%	4000	
Combined	0.28%	3.3%	1.3%		
				2000	

22

CEPC CDR 5.6 ab^{-1} , 240 GeV $Z \rightarrow u^+u^-$, $H \rightarrow q\overline{q}$

New bb/cc/gg by Yong Feng

2203.01469;

- Color singlet identification(CSI)
- Template fit with real yield with Hessian matrix;

Correlations:

- ZH bb & cc: -15.40%
- ZH bb & gg: -17.04%
- ZH cc & gg: -25.68%

10³

10²

$vvH \rightarrow bb$

- 2d fit M_{jj}^{reco} & Cos θ_{jj}
- $vvH \rightarrow bb$ and $ZH \rightarrow bb$
 - Interference ~10% of vvH. (generally, 60: 1:10)
 - Add the interference term to vvH side currently;
 - If fix ZH process, Initial uncertainty is 2.8%.
 - ZH->bb constrained by other bb channels. If not, would be 3.4%.
 - $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -45%. (-34% in ILC(1708.08912))
- $\sigma(vvH) * Br: 3.0\%$;
 - *σ*(*vvH*): 3.2%.

Invisible	ZH final state studied	Relative precision on $\sigma(ZH) \times BR$	Upper limit on BR $(H \rightarrow inv.)$	CEPC
See 2001.05912;	$ \begin{array}{c} Z \rightarrow e^+ e^-, \ H \rightarrow \text{inv.} \\ Z \rightarrow \mu^+ \mu^-, \ H \rightarrow \text{inv.} \\ Z \rightarrow q \overline{q}, \ H \rightarrow \text{inv.} \\ \hline \text{Combination} \end{array} $	403% 98% 85% 63%	0.96% 0.31% 0.29% 0.24%	
$ \begin{array}{c} 300 \\ \hline 0 $	800 CEPC Simulation 700 S+B Fit Signal 600 400 400 200 100 100 120 125 130	CEPC 2019 5.6 ab ⁻¹ , 240 GeV Z→e ⁺ e ⁻ , H→ZZ [*] →vvvv	10000 • CEPC Simulation 9000 • S+B Fit 8000 • Background 7000 • Background 6000 • • • • • • • • • • • • • • • • • • •	CEPC 2019 5.6 ab ⁻¹ , 240 GeV Z→qq, H→ZZ*→νννν
ZH(Z-> $\mu^+\mu^-$,H->invisible)	ZH(Z->e ⁺ e ⁻ ,	H->invisible)	ZH(Z->qq,F	l->invisible)

ττ, μμ

- *ττ*: 1903.12327;
 - Develop LICH to identify lepton. Eff>99%
 - Signal and ZH events(Main WW) share the same shape
 - use $\log_{10}(D_0^2 + Z_0^2)$ + mass 2d fit to separate signal
 - Impact parameter, Distance from beam spot

• μμ

• See Ran Kunlin's report in 2021 Yangzhou.

	qqh_e2e2)
[%]	Stat	Eff	Rel
Initial	148.85	100	100
N_mum > 0, N_mup > 0	148	99.43	99.43
105 < M_mumu < 130 GeV	123.75	83.14	83.62
25 < N_particle < 115	123.02	82.64	99.41
55 < M_qq < 125 GeV	122.02	81.97	99.19
P_ppmumu < 32 GeV, 195 < E_ppmumu < 265 GeV	121.32	81.51	99.43
35 < E_mum < 100 GeV, 35 < E_mup < 100 GeV	120.89	81.22	99.65
16 < p_mumu < 72 GeV	120.31	80.82	99.51
N_em < 6, N_ep < 6, N_e < 10	119.33	80.17	99.19
E_em < 10 GeV, E_ep < 10 GeV, E_ee < 19 GeV	116	77.93	97.21
124 < m_mumu < 125 GeV	73.27	49.22	63.17

Precision

2.6%

ZH final state

 $H \rightarrow \tau^+ \tau^-$

 $Z \rightarrow \mu^+ \mu^-$

26

WW, ZZ

- ZZ: 2103.09633;
 - CDR ZZ results a bit overestimated;
 - Current ZZ 7.9% didn't include all the possible ZZ channels yet,
 - Still have room to improve.

• WW

• Much more channels studied since Pre_CDR.

	Z	ee	μμ	vv	qq
ww	ev+ev				
	μν+μν				
	ev+μv				
	ev+qq				
	µv+qq				
	qq+qq				

Category	$\frac{\Delta(\sigma \cdot BR)}{(\sigma \cdot BR)}$	[%]
00	cut-based	BDT
$\mu\mu\mathrm{H} u u q q^{\mathrm{cut/mva}}$	15	14
$\mu\mu\mathrm{H}qq u u^{\mathrm{cut}/\mathrm{mva}}$	48	42
$ u u \mathrm{H} \mu \mu q q^{\mathrm{cut}/\mathrm{mva}}$	12	12
$ u u \mathrm{H} q q \mu \mu^{\mathrm{cut}/\mathrm{mva}}$	23	20
$qq\mathrm{H} u u \mu \mu^{\mathrm{cut}/\mathrm{mva}}$	45	37
$qq H \mu \mu \nu \nu^{\rm cut/mva}$	52	44
Combined	8.3	7.9

Synergy with other experiments

- CEPC
- The comparison is mainly referring [de Blas, J. *et al.* arXiv:1905.03764]
 - Also kappa and EFT results are shown between CEPC240, HL-LHC, Fcc, ILC.....
 - In the paper, only CEPC 240GeV 5.6iab results included.

kappa-0	HL-LHC	LHeC	HE	LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/eh/hh
			S 2	S2′	250	500	1000	380	15000	3000		240	365	
<i>к</i> _W [%]	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14
<i>к</i> _Z [%]	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12
κ_{g} [%]	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49
κ_{γ} [%]	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29
$\kappa_{Z\gamma}$ [%]	10.	_	5.7	3.8	99 *	86*	85 *	$120\star$	15	6.9	8.2	$81\star$	75 *	0.69
κ_c [%]	_	4.1	—	_	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95
$\kappa_t [\%]$	3.3	—	2.8	1.7	—	6.9	1.6	—	_	2.7	-	—	—	1.0
<i>к</i> _b [%]	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43
κμ [%]	4.6	-	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41
κ _τ [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44

Ironno 2 coonorio	HL-LHC+										
kappa-5 scenario	ILC ₂₅₀	ILC500	ILC_{1000}	CLIC380	CLIC_{1500}	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh	
κ_W [%]	1.0	0.29	0.24	0.73	0.40	0.38	0.88	0.88	0.41	0.19	
$\kappa_Z[\%]$	0.29	0.22	0.23	0.44	0.40	0.39	0.18	0.20	0.17	0.16	
$\kappa_{g}[\%]$	1.4	0.85	0.63	1.5	1.1	0.86	1.	1.2	0.9	0.5	
κ _γ [%]	1.4	1.2	1.1	1.4*	1.3	1.2	1.3	1.3	1.3	0.31	
$\kappa_{Z\gamma}$ [%]	10.*	10.*	10.*	10.*	8.2	5.7	6.3	10.*	10.*	0.7	
$\kappa_c ~[\%]$	2.	1.2	0.9	4.1	1.9	1.4	2.	1.5	1.3	0.96	
κ_t [%]	3.1	2.8	1.4	3.2	2.1	2.1	3.1	3.1	3.1	0.96	
$\kappa_b \ [\%]$	1.1	0.56	0.47	1.2	0.61	0.53	0.92	1.	0.64	0.48	
κ_{μ} [%]	4.2	3.9	3.6	4.4*	4.1	3.5	3.9	4.	3.9	0.43	
$\kappa_{ au}$ [%]	1.1	0.64	0.54	1.4	1.0	0.82	0.91	0.94	0.66	0.46	
BR _{inv} (<%, 95% CL)	0.26	0.23	0.22	0.63	0.62	0.62	0.27	0.22	0.19	0.024	
BR _{unt} (<%, 95% CL)	1.8	1.4	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.	

$$\Gamma_{H} = \frac{\Gamma_{H}^{\text{SM}} \cdot \kappa_{H}^{2}}{1 - (BR_{inv} + BR_{unt})}$$

Scenario	BR _{inv}	BR _{unt}	include HL-LHC
kappa-0	fixed at 0	fixed at 0	no
kappa-1 kappa-2	measured measured	fixed at 0 measured	no no
kappa-3	measured	measured	yes

Though CEPC@360GeV not included in the synergy, we expect similar performance compared to Fcc-ee.