Joint Workshop of the CEPC Physics, Software and New Detector Concept May 24, 2022

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling

Jorge de Blas University of Granada

Based on:

L. Alasfar, J.B. R. Gröber, arXiv: 2202.0233 [hep-ph] (Accepted for publication in JHEP)

Funded by: FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades/Project P18-FRJ-3735

Introduction g_m

• Two main ways of extracting the Higgs self-coupling, κ_{λ} , at the LHC

g

4π

University of Granada

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling May 24, 2022

• Two main ways of extracting the Higgs self-coupling, κ_{λ} , at the LHC

4π

 $n = g_{min}$

g

University of Granada

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling May 24, 2022

Introduction

NLO effects give indirect access to inte opposite comments

✓ h^3 contributions to single Higgs. e.g.

M. Gorbahn at al., JHEP 10 (2016) 094; G. Degrassi et al., JHEP 12 (2016) 080 *

1000000

leeeeeec

ففففقفق

\checkmark Used already in EXP analyses/interpretations

 * First suggested in the context of future e⁺e⁻ Higgs factories by: M. McCullough, PRD 90 (2014) 1, 015001 (PRD 92 (2015) 3, 039903 [erratum]), arXiv: 1312.3322 [hep-ph]

Jorge de Blas University of Granada

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling May 24, 2022 ATL-PHYS-PUB-2019-009

• Two main ways of extracting the Higgs self-coupling, κ_{λ} , at the LHC

4π

 $n = g_{min}$

g

May 24, 2022

University of Granada

• Two main ways of extracting the Higgs self-coupling, κ_{λ} , at the LHC

4π

 $n = g_{min}$

g

University of Granada

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling May 24, 2022

Introduction

• NLO effects give indirect access to inte

✓ h^3 contributions to single Higgs. e.g.

M. Gorbahn at al., JHEP 10 (2016) 094; G. Degrassi et al., JHEP 12 (2016) 080 *

leeeeee

✓ Other new physics effects can also modify single Higgs processes at the same

4-Top operators ALSO enter in ggF, *tth*, $h \rightarrow bb$ and $h \rightarrow \gamma\gamma$ @ NLO and <u>experimental bounds are weak</u>

Can difficult the interpretation of single-Higgs processes as probes of h³

Conversely, one can use Higgs data to probe such interactions, similar to what was proposed in G. Durieux, J. Gu, E. Vryonidou, C. Zhang, Chin. Phys. C 42 (2018) 12, 123107 (at future Higgs factories)

Introduction

• NLO effects give indirect access to inte

✓ h^3 contributions to single Higgs. e.g. ^a

M. Gorbahn at Al., JHEP 10 (2016) 094; G. Degrassi et al. , JHEP 12 (2016) 080 *

Jorge de Blas University of Granada

Setup of the Calculation The Standard Model Effective Field Theory

The dimension-six SMEFT

• We will work within the formalism of the EFTs...

• ... and, in particular, in the **SMEFT:** SM particles and symmetries at low energies, with <u>the Higgs scalar in an SU(2)_L doublet</u> + mass gap with new physics (entering at scale Λ)

$$egin{aligned} \mathcal{L}_{\mathrm{UV}}(?) & \longrightarrow & \mathcal{L}_{\mathrm{Eff}} = \sum_{d=4}^\infty rac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda} \mathcal{L}_5 + rac{1}{\Lambda^2} \mathcal{L}_6 + \cdots \ & E \ll \Lambda & \mathcal{L}_d = \sum_i C_i^d \mathcal{O}_i & \left[\mathcal{O}_i
ight] = d & \longrightarrow & \left(rac{q}{\Lambda}
ight)^{d-4} \end{aligned}$$

• Leading Order (LO) Beyond the SM effects (assuming B & L) \Rightarrow Dim-6 SMEFT: 2499 operators

• In this talk, we will follow the conventions of the Warsaw basis

The dimension-six SMEFT: 4-quark operators

• We focus on the set of 4-fermion interactions between 3rd-family quarks:

$$\begin{split} \Delta \mathcal{L}_{\rm SMEFT}^{d=6} &= \frac{C_{tt}}{\Lambda^2} (\bar{t}_R \gamma_\mu t_R) (\bar{t}_R \gamma^\mu t_R) + \frac{C_{Qt}^{(1)}}{\Lambda^2} (\bar{Q}_L \gamma_\mu Q_L) (\bar{t}_R \gamma^\mu t_R) + \frac{C_{Qt}^{(8)}}{\Lambda^2} (\bar{Q}_L T^A \gamma_\mu Q_L) (\bar{t}_R T^A \gamma^\mu t_R) \\ &+ \frac{C_{QQ}^{(1)}}{\Lambda^2} (\bar{Q}_L \gamma_\mu Q_L) (\bar{Q}_L \gamma^\mu Q_L) + \frac{C_{QQ}^{(3)}}{\Lambda^2} (\bar{Q}_L \sigma_a \gamma_\mu Q_L) (\bar{Q}_L \sigma_a \gamma^\mu Q_L) \\ &+ \left[\frac{C_{QtQb}^{(1)}}{\Lambda^2} (\bar{Q}_L t_R) i \sigma_2 (\bar{Q}_L^{\rm T} b_R) + \frac{C_{QtQ}^{(8)}}{\Lambda^2} (\bar{Q}_L T^A t_R) i \sigma_2 (\bar{Q}_L^{\rm T} T^A b_R) + \text{h.c.} \right] \\ &+ \frac{C_{bb}}{\Lambda^2} (\bar{b}_R \gamma_\mu b_R) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{tb}^{(1)}}{\Lambda^2} (\bar{t}_R \gamma_\mu t_R) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{tb}^{(8)}}{\Lambda^2} (\bar{t}_R T^A \gamma_\mu t_R) (\bar{b}_R T^A \gamma^\mu b_R) \\ &+ \frac{C_{Qb}^{(1)}}{\Lambda^2} (\bar{Q}_L \gamma_\mu Q_L) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{Qb}^{(8)}}{\Lambda^2} (\bar{Q}_L T^A \gamma_\mu Q_L) (\bar{b}_R T^A \gamma^\mu b_R) , \end{split}$$

 In particular, several of these mix under renormalisation with the operators modifying the Yukawas (enter at LO in the relevant single-Higgs processes):

$$\Delta \mathcal{L}_{\text{SMEFT}}^{d=6} = \left(\frac{C_{t\phi}}{\Lambda^2}\phi^{\dagger}\phi\,\overline{Q}_L\tilde{\phi}\,t_R + \frac{C_{b\phi}}{\Lambda^2}\phi^{\dagger}\phi\,\overline{Q}_L\phi\,b_R + \text{h.c.}\right)$$

• We will discuss the interplay with the Higgs trilinear \Rightarrow consider the operator

$$\Delta \mathcal{L}_{\text{SMEFT}}^{d=6} = \frac{C_{\phi}}{\Lambda^2} (\phi^{\dagger} \phi)^3, \qquad \rightarrow \qquad \delta \kappa_{\lambda} = -2 \frac{C_{\phi} v^4}{m_h^2 \Lambda^2}$$

The dimension-six SMEFT: 4-quark operators

• We focus on the set of 4-fermion interactions between 3rd-family quarks:

$$\begin{split} \Delta \mathcal{L}_{\mathrm{SMEFT}}^{d=6} &= \frac{C_{tt}}{\Lambda^2} (\bar{t}_R \gamma_\mu t_R) (\bar{t}_R \gamma^\mu t_R) + \frac{C_{Qt}^{(1)}}{\Lambda^2} (\overline{Q}_L \gamma_\mu Q_L) (\bar{t}_R \gamma^\mu t_R) + \frac{C_{Qt}^{(2)}}{\Lambda^2} (\overline{Q}_L T^A \gamma_\mu Q_L) (\bar{t}_R T^A \gamma^\mu t_R) \\ &+ \frac{C_{QQ}^{(1)}}{\Lambda^2} (\overline{Q}_L \gamma_\mu Q_L) (\overline{Q}_L \gamma^\mu Q_L) + \frac{C_{QQ}^{(3)}}{\Lambda^2} (\overline{Q}_L \sigma_a \gamma_\mu Q_L) (\overline{Q}_L \sigma_a \gamma^\mu Q_L) \\ &+ \left[\frac{C_{QlQ}^{(1)}}{\Lambda^2} (\overline{Q}_L t_R) i \sigma_2 (\overline{Q}_L^T b_R) + \frac{C_{QlQ}^{(3)}}{\Lambda^2} (\overline{Q}_L T^A t_R) i \sigma_2 (\overline{Q}_L^T T^A b_R) + \mathrm{h.c.} \right] \\ &+ \frac{C_{bb}}{\Lambda^2} (\bar{b}_R \gamma_\mu b_R) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{bb}^{(1)}}{\Lambda^2} (\bar{t}_R \gamma_\mu t_R) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{bb}^{(8)}}{\Lambda^2} (\bar{t}_R T^A \gamma_\mu t_R) (\bar{b}_R T^A \gamma^\mu b_R) \\ &+ \frac{C_{Qb}^{(1)}}{\Lambda^2} (\overline{Q}_L \gamma_\mu Q_L) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{bb}^{(8)}}{\Lambda^2} (\overline{Q}_L T^A \gamma_\mu Q_L) (\bar{b}_R T^A \gamma^\mu b_R) , \end{split}$$

• We will discuss the interplay with the Higgs trilinear \Rightarrow consider the operator

$$\Delta \mathcal{L}_{\text{SMEFT}}^{d=6} = \frac{C_{\phi}}{\Lambda^2} (\phi^{\dagger} \phi)^3, \qquad \rightarrow \qquad \delta \kappa_{\lambda} = -2 \frac{C_{\phi} v^4}{m_h^2 \Lambda^2}$$

The dimension-six SMEFT: 4-quark operators

• We focus on the set of 4-fermion interactions between 3rd-family quarks:

$$\begin{split} \Delta \mathcal{L}_{\text{SMEFT}}^{d=6} &= \frac{C_{tt}}{\Lambda^2} (\bar{t}_R \gamma_\mu t_R) (\bar{t}_R \gamma^\mu t_R) + \frac{C_{Qt}^{(1)}}{\Lambda^2} (\bar{Q}_L \gamma_\mu Q_L) (\bar{t}_R \gamma^\mu t_R) + \frac{C_{Qt}^{(8)}}{\Lambda^2} (\bar{Q}_L T^A \gamma_\mu Q_L) (\bar{t}_R T^A \gamma^\mu t_R) \\ &+ \frac{C_{QQ}^{(1)}}{\Lambda^2} (\bar{Q}_L \gamma_\mu Q_L) (\bar{Q}_L \gamma^\mu Q_L) + \frac{C_{QQ}^{(3)}}{\Lambda^2} (\bar{Q}_L \sigma_a \gamma_\mu Q_L) (\bar{Q}_L \sigma_a \gamma^\mu Q_L) \\ &+ \left[\frac{C_{QtQb}^{(1)}}{\Lambda^2} (\bar{Q}_L t_R) i \sigma_2 (\bar{Q}_L^T b_R) + \frac{C_{QtQb}^{(8)}}{\Lambda^2} (\bar{Q}_L T^A t_R) i \sigma_2 (\bar{Q}_L^T T^A b_R) + \text{h.c.} \right] \\ &+ \frac{C_{bb}}{\Lambda^2} (\bar{b}_R \gamma_\mu b_R) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{tb}^{(1)}}{\Lambda^2} (\bar{t}_R \gamma_\mu t_R) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{tb}^{(8)}}{\Lambda^2} (\bar{t}_R T^A \gamma_\mu t_R) (\bar{b}_R T^A \gamma^\mu b_R) \\ &+ \frac{C_{Qb}^{(1)}}{\Lambda^2} (\bar{Q}_L \gamma_\mu Q_L) (\bar{b}_R \gamma^\mu b_R) + \frac{C_{Qb}^{(8)}}{\Lambda^2} (\bar{Q}_L T^A \gamma_\mu Q_L) (\bar{b}_R T^A \gamma^\mu b_R) , \end{split}$$

- Note that these interactions are also relevant from BSM point of view, e.g.
 - ✓ Composite Higgs : $C_i/\Lambda^2 \sim 1/f^2$. (Similar to single *h* couplings though)
 - ✓ Can be generated in isolation, at tree level, by several SM extensions, e.g.
 - $\blacktriangleright \text{ New Scalars: } \Omega_1 \qquad (6,1)_{\frac{1}{3}} \longrightarrow \mathcal{O}_{qq}^{(1)}, \mathcal{O}_{ud}^{(3)}, \mathcal{O}_{ud}^{(1)}, \mathcal{O}_{ud}^{(8)}, \mathcal{O}_{quqd}^{(1)}, \mathcal{O}_{quqd}^{(8)}, \mathcal{O}_{quqd}^{$

 $\Phi \quad (8,2)_{\frac{1}{2}} \longrightarrow \mathcal{O}_{qu}^{(1)}, \mathcal{O}_{qu}^{(8)}, \mathcal{O}_{qd}^{(1)}, \mathcal{O}_{qd}^{(8)}, \mathcal{O}_{quqd}^{(8)}$

Four-quark operators in LHC Higgs observables

Effective Higgs couplings to gluons and photons

• Four-quark operators induce NLO 2-loop contributions to ggF, $h \rightarrow \gamma\gamma$, $h \rightarrow gg$

- Results can be written as product of I-loop integrals
- Relevant operators $\rightarrow \mathcal{O}_{Qt}^{(1),(8)} = \mathcal{O}_{QtQb}^{(1),(8)} = \mathcal{O}_{Qb}^{(1),(8)}$ Contrib. suppressed by m_b
- Also contribute to $h \rightarrow Z\gamma$, but given the expected precision at (HL-)LHC and the small BR this mode is of little relevance and we ignore it

Example Feynman diagrams

Higgs decays to bottom quarks

• 2-Top 2-Bottom operators also induce NLO 1-loop contributions to $h \rightarrow bb$

First computed in R. Gauld, B.D.Pecjack, D.J. Scott, JHEP 05 (2016) 080 Recomputed in our work and in agreement with their results

- Note: similarly, decays $h \rightarrow \tau \tau$ would be affected by analogous (semi-leptonic) operators $(O_{L\tau Qt})$ that may not be strongly constrained

R. Gauld, B.D.Pecjack, D.J. Scott, JHEP 05 (2016) 080

Higgs production in association to Top quark pairs

• *tth* can be initiated either via $gg \rightarrow tth$ or $qq \rightarrow tth$, both of which are corrected at I-loop by 4-quark operators

NLO effects of 4 Top operators in Higgs production

Some (brief) details of the calculation

- Dimensional regularisation + Mixed On-Shell (OS)-MS renormalisation scheme:
 - ✓ Quark masses renorm. OS/dim-6 Wilson coefficients renorm. in MS
- ggF, $h \rightarrow \gamma\gamma$, $h \rightarrow gg$, $h \rightarrow bb$: Computed analytically using algebra tools such as PackageX, Kira, Fire, FeynRules, FeynArts

✓ Analytical expressions provided, e.g.

$\frac{\sigma_{ggF}}{\sigma_{ggF}} = 1 + \frac{\sum_{i=t,b} 2 \operatorname{Re}\left(F_{\mathrm{LO}}^{i} F_{\mathrm{NLO}}^{*}\right)}{2 \operatorname{Re}\left(F_{\mathrm{LO}}^{i} F_{\mathrm{NLO}}^{*}\right)}$	$F_{\rm NLO} = \frac{1}{4\pi^2 \Lambda^2} (C_{Qt}^{(1)} + c_F C_{Qt}^{(8)}) F_{\rm LO}^t \left[2m_t^2 + \frac{1}{4} (m_h^2 - 4m_t^2) \left(3 + 2\sqrt{1 - \frac{4m_t^2}{m_h^2}} \log(x_t) \right) \right]$
$\sigma_{ggF}^{\rm SM} = 1 + \left F_{\rm LO}^t + F_{\rm LO}^b \right ^2$	$+ \frac{1}{2}(m_h^2 - 4m_t^2) \log\left(\frac{\mu_R^2}{m_t^2}\right) \bigg]$
$F_{1,0}^{i} = -\frac{8m_{i}^{2}}{2} \left[1 - \frac{1}{2} \log^{2}(x_{i}) \left(1 - \frac{4m_{i}^{2}}{2} \right) \right]$	$+\frac{1}{32\pi^2\Lambda^2}((2N_c+1)C_{QtQb}^{(1)}+c_F C_{QtQb}^{(8)})\left[F_{\rm LO}^b\frac{m_t}{m_b}\left(4m_t^2-2m_h^2\right)\right]$
$m_h^2 \begin{bmatrix} 4 & 3 & (m_h^2) \end{bmatrix}$	$-(m_h^2 - 4m_t^2)\sqrt{1 - \frac{4m_t^2}{m_h^2}}\log(x_t) - (m_h^2 - 4m_t^2)\log\left(\frac{\mu_R^2}{m_t^2}\right)\right) + (t \leftrightarrow b)\bigg].$

- *tth*: Analytical calculation, cross-checked using Madgraph_aMCNLO and SMEFTatNLO v1.0.2 model
 - ✓ We modified SMEFTatNLO to include operators not available in public version of the model, e.g. $\mathcal{O}_{QtQb}^{(1),(8)}$
 - ✓ Our analytical result available in FORTRAN code (on request)

• We evaluate the size of these corrections and provide semi-analytical expressions (in the leading-log approx.) that can be used inside fitting tools:

Operator	Process	μ_R	$\delta R_{C_i}^{fin} \; [\text{TeV}^2]$	$\delta R_{C_i}^{log} [\text{TeV}^2]$
$\mathcal{O}_{Qt}^{(1)}$	$ \begin{array}{c c} \mathrm{ggF} \\ h \rightarrow gg \\ h \rightarrow \gamma \gamma \\ t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array} $	$\frac{\frac{m_h}{2}}{m_h}$ $m_t + \frac{m_h}{2}$	$\begin{array}{r} 9.91 \cdot 10^{-3} \\ 6.08 \cdot 10^{-3} \\ -1.76 \cdot 10^{-3} \\ -4.20 \cdot 10^{-1} \\ -4.30 \cdot 10^{-1} \end{array}$	$\begin{array}{r} 2.76 \cdot 10^{-3} \\ 2.76 \cdot 10^{-3} \\ -0.80 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3} \end{array}$
$\mathcal{O}_{Qt}^{(8)}$	$ \begin{array}{c c} \mathrm{ggF} \\ h \rightarrow gg \\ h \rightarrow \gamma\gamma \\ t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array} $	$\frac{\frac{m_h}{2}}{m_h}$ $m_t + \frac{m_h}{2}$	$\begin{array}{c} 1.32 \cdot 10^{-2} \\ 8.11 \cdot 10^{-3} \\ -2.09 \cdot 10^{-3} \\ 6.81 \cdot 10^{-2} \\ 7.29 \cdot 10^{-2} \end{array}$	$\begin{array}{r} 3.68 \cdot 10^{-3} \\ 3.68 \cdot 10^{-3} \\ -1.07 \cdot 10^{-3} \\ -2.40 \cdot 10^{-3} \\ -2.48 \cdot 10^{-3} \end{array}$
${\cal O}^{(1)}_{QtQb}$	$ \begin{array}{c c} \mathrm{ggF} \\ h \to gg \\ h \to \gamma\gamma \\ h \to b\overline{b} \end{array} \end{array} $	$rac{m_h}{2}$ m_h	$\begin{array}{c} 2.84 \cdot 10^{-2} \\ 1.57 \cdot 10^{-2} \\ -1.30 \cdot 10^{-3} \\ 9.25 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 9.21 \cdot 10^{-3} \\ 9.21 \cdot 10^{-3} \\ -0.78 \cdot 10^{-3} \\ 1.68 \cdot 10^{-1} \end{array}$
${\cal O}^{(8)}_{QtQb}$	$ \begin{array}{c} \mathrm{ggF} \\ h \to gg \\ h \to \gamma\gamma \\ h \to b\overline{b} \end{array} \end{array} $	$rac{m_h}{2}$ m_h	$5.41 \cdot 10^{-3} \\ 2.98 \cdot 10^{-3} \\ -0.25 \cdot 10^{-3} \\ 1.76 \cdot 10^{-2}$	$\begin{array}{c} 1.76 \cdot 10^{-3} \\ 1.76 \cdot 10^{-3} \\ -0.15 \cdot 10^{-3} \\ 3.20 \cdot 10^{-2} \end{array}$
${\cal O}_{QQ}^{(1)}$	$\begin{array}{c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$\frac{1.75 \cdot 10^{-3}}{1.65 \cdot 10^{-3}}$	$1.84 \cdot 10^{-3}$ $1.76 \cdot 10^{-3}$
${\cal O}^{(3)}_{QQ}$	$\begin{array}{c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$ 1.32 \cdot 10^{-2} \\ 1.24 \cdot 10^{-2} $	$5.48 \cdot 10^{-3} \\ 5.30 \cdot 10^{-3}$
\mathcal{O}_{tt}	$\begin{array}{c c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$4.60 \cdot 10^{-3} 4.57 \cdot 10^{-3}$	$\frac{1.82 \cdot 10^{-3}}{1.74 \cdot 10^{-3}}$

$$\begin{split} \delta R(C_i) &= R/R^{\text{SM}} - 1\\ \delta R(C_i) &= \frac{C_i}{\Lambda^2} \left(\delta R_{C_i}^{fin} + \delta R_{C_i}^{log} \log\left(\frac{\mu_R^2}{\Lambda^2}\right) \right)\\ R &= \sigma, \ \Gamma \end{split}$$

• We evaluate the size of these corrections and provide semi-analytical expressions (in the leading-log approx.) that can be used inside fitting tools:

Operator	Process	μ_R	$\delta R_{C_i}^{fin} \; [\text{TeV}^2]$	$\delta R_{C_i}^{log} [\text{TeV}^2]$
$\mathcal{O}_{Qt}^{(1)}$	$ \begin{vmatrix} ggF \\ h \rightarrow gg \\ h \rightarrow \gamma\gamma \\ t\bar{t}h \ 13 \ TeV \\ t\bar{t}h \ 14 \ TeV \end{vmatrix} $	$\frac{\frac{m_h}{2}}{m_h}$ $m_t + \frac{m_h}{2}$	$\begin{array}{r} 9.91 \cdot 10^{-3} \\ 6.08 \cdot 10^{-3} \\ -1.76 \cdot 10^{-3} \\ -4.20 \cdot 10^{-1} \\ -4.30 \cdot 10^{-1} \end{array}$	$\begin{array}{r} 2.76 \cdot 10^{-3} \\ 2.76 \cdot 10^{-3} \\ -0.80 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3} \end{array}$
$\mathcal{O}_{Qt}^{(8)}$	$ \begin{array}{ c c } & \mathrm{ggF} \\ & h \rightarrow gg \\ & h \rightarrow \gamma\gamma \\ & t\bar{t}h \ 13 \ \mathrm{TeV} \\ & t\bar{t}h \ 14 \ \mathrm{TeV} \end{array} $	$\frac{\frac{m_h}{2}}{m_h}$ $m_t + \frac{m_h}{2}$	$\begin{array}{r} 1.32 \cdot 10^{-2} \\ 8.11 \cdot 10^{-3} \\ -2.09 \cdot 10^{-3} \\ 6.81 \cdot 10^{-2} \\ 7.29 \cdot 10^{-2} \end{array}$	$\begin{array}{r} 3.68 \cdot 10^{-3} \\ 3.68 \cdot 10^{-3} \\ -1.07 \cdot 10^{-3} \\ -2.40 \cdot 10^{-3} \\ -2.48 \cdot 10^{-3} \end{array}$
$\mathcal{O}_{QtQb}^{(1)}$	$ \begin{vmatrix} ggF \\ h \to gg \\ h \to \gamma\gamma \\ h \to b\overline{b} \end{vmatrix} $	$rac{m_h}{2}$ m_h	$\begin{array}{c} 2.84 \cdot 10^{-2} \\ 1.57 \cdot 10^{-2} \\ -1.30 \cdot 10^{-3} \\ 9.25 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 9.21 \cdot 10^{-3} \\ 9.21 \cdot 10^{-3} \\ -0.78 \cdot 10^{-3} \\ 1.68 \cdot 10^{-1} \end{array}$
${\cal O}^{(8)}_{QtQb}$	$ \begin{vmatrix} ggF \\ h \to gg \\ h \to \gamma\gamma \\ h \to b\overline{b} \end{vmatrix} $	$rac{m_h}{2}$ m_h	$5.41 \cdot 10^{-3}$ $2.98 \cdot 10^{-3}$ $-0.25 \cdot 10^{-3}$ $1.76 \cdot 10^{-2}$	$\begin{array}{c} 1.76 \cdot 10^{-3} \\ 1.76 \cdot 10^{-3} \\ -0.15 \cdot 10^{-3} \\ 3.20 \cdot 10^{-2} \end{array}$
$\mathcal{O}_{QQ}^{(1)}$	$\begin{array}{c c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$1.75 \cdot 10^{-3}$ $1.65 \cdot 10^{-3}$	$1.84 \cdot 10^{-3}$ $1.76 \cdot 10^{-3}$
$\mathcal{O}_{QQ}^{(3)}$	$ \begin{array}{c c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array} $	$m_t + \frac{m_h}{2}$	$\begin{array}{c} 1.32 \cdot 10^{-2} \\ 1.24 \cdot 10^{-2} \end{array}$	$5.48 \cdot 10^{-3}$ $5.30 \cdot 10^{-3}$
\mathcal{O}_{tt}	$ \begin{array}{c c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array} $	$m_t + \frac{m_h}{2}$	$4.60 \cdot 10^{-3} 4.57 \cdot 10^{-3}$	$\frac{1.82 \cdot 10^{-3}}{1.74 \cdot 10^{-3}}$

$$\begin{split} \delta R(C_i) &= R/R^{\text{SM}} - 1\\ \delta R(C_i) &= \frac{C_i}{\Lambda^2} \left(\delta R_{C_i}^{fin} + \delta R_{C_i}^{log} \log \left(\frac{\mu_R^2}{\Lambda^2} \right) \right)\\ R &= \sigma, \ \Gamma \end{split}$$

Comments:

For Λ =1 TeV, log effects usually ~ finite terms (with some exceptions)

 O_{QtQb} operators only enter via the combination appearing in the RGEs of $C_{t\phi,b\phi}$

$$C_{QtQb}^{+} = (2N_c + 1)C_{QtQb}^{(1)} + c_F C_{QtQb}^{(8)}$$

 O_{QQ} and O_{tt} operators only contribute to *tth* but, for Λ =1 TeV and O(1) coefficients their effects are typically below SM theory uncertainty ~10%

 \Rightarrow to good approx. *tth* only affected by $O_{Qt}^{(1),(8)}$

• We evaluate the size of these corrections and provide semi-analytical expressions (in the leading-log approx.) that can be used inside fitting tools:

Operator	Process	μ_R	$\delta R_{C_i}^{fin} [\text{TeV}^2]$	$\delta R_{C_i}^{log} \; [\text{TeV}^2]$
$\mathcal{O}_{Qt}^{(1)}$	$ \begin{array}{c c} \mathrm{ggF} \\ h \rightarrow gg \\ h \rightarrow \gamma \gamma \\ t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array} $	$\frac{\frac{m_h}{2}}{m_h}$ $m_t + \frac{m_h}{2}$	$\begin{array}{r} 9.91 \cdot 10^{-3} \\ 6.08 \cdot 10^{-3} \\ -1.76 \cdot 10^{-3} \\ -4.20 \cdot 10^{-1} \\ -4.30 \cdot 10^{-1} \end{array}$	$\begin{array}{r} 2.76 \cdot 10^{-3} \\ 2.76 \cdot 10^{-3} \\ -0.80 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3} \end{array}$
$\mathcal{O}_{Qt}^{(8)}$	$ \begin{array}{c c} ggF \\ h \rightarrow gg \\ h \rightarrow \gamma \gamma \\ t\bar{t}h \ 13 \ \text{TeV} \\ t\bar{t}h \ 14 \ \text{TeV} \end{array} $	$\frac{\frac{m_h}{2}}{m_h}$ $m_t + \frac{m_h}{2}$	$\begin{array}{c} 1.32 \cdot 10^{-2} \\ 8.11 \cdot 10^{-3} \\ -2.09 \cdot 10^{-3} \\ 6.81 \cdot 10^{-2} \\ 7.29 \cdot 10^{-2} \end{array}$	$\begin{array}{r} 3.68 \cdot 10^{-3} \\ 3.68 \cdot 10^{-3} \\ -1.07 \cdot 10^{-3} \\ -2.40 \cdot 10^{-3} \\ -2.48 \cdot 10^{-3} \end{array}$
${\cal O}^{(1)}_{QtQb}$	$ \begin{array}{c} \mathrm{ggF} \\ h \to gg \\ h \to \gamma\gamma \\ h \to b\bar{b} \end{array} \end{array} $	$rac{m_h}{2}$ m_h	$\begin{array}{c} 2.84 \cdot 10^{-2} \\ 1.57 \cdot 10^{-2} \\ -1.30 \cdot 10^{-3} \\ 9.25 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 9.21 \cdot 10^{-3} \\ 9.21 \cdot 10^{-3} \\ -0.78 \cdot 10^{-3} \\ 1.68 \cdot 10^{-1} \end{array}$
${\cal O}^{(8)}_{QtQb}$	$ \begin{array}{c c} ggF \\ h \rightarrow gg \\ h \rightarrow \gamma\gamma \\ h \rightarrow b\overline{b} \end{array} \end{array} $	$rac{m_h}{2}$ m_h	$5.41 \cdot 10^{-3}$ $2.98 \cdot 10^{-3}$ $-0.25 \cdot 10^{-3}$ $1.76 \cdot 10^{-2}$	$\begin{array}{c} 1.76 \cdot 10^{-3} \\ 1.76 \cdot 10^{-3} \\ -0.15 \cdot 10^{-3} \\ 3.20 \cdot 10^{-2} \end{array}$
$\mathcal{O}_{QQ}^{(1)}$	$\begin{array}{c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$\frac{1.75 \cdot 10^{-3}}{1.65 \cdot 10^{-3}}$	$\frac{1.84 \cdot 10^{-3}}{1.76 \cdot 10^{-3}}$
${\cal O}^{(3)}_{QQ}$	$t\bar{t}h$ 13 TeV $t\bar{t}h$ 14 TeV	$m_t + \frac{m_h}{2}$	$\frac{1.32 \cdot 10^{-2}}{1.24 \cdot 10^{-2}}$	$5.48 \cdot 10^{-3} \\ 5.30 \cdot 10^{-3}$
\mathcal{O}_{tt}	$\begin{array}{c c} t\overline{t}h \ 13 \ \mathrm{TeV} \\ t\overline{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$\frac{4.60 \cdot 10^{-3}}{4.57 \cdot 10^{-3}}$	$\frac{1.82 \cdot 10^{-3}}{1.74 \cdot 10^{-3}}$

$$\begin{split} \delta R(C_i) &= R/R^{\text{SM}} - 1\\ \delta R(C_i) &= \frac{C_i}{\Lambda^2} \left(\delta R_{C_i}^{fin} + \delta R_{C_i}^{log} \log \left(\frac{\mu_R^2}{\Lambda^2} \right) \right)\\ R &= \sigma, \ \Gamma \end{split}$$

Contrib. from *h* self-coupling (C_{ϕ})

Process	$\delta R^{fin}_{C_{\phi}}$
$\mathrm{ggF}/\ gg \to h$	$-3.10 \cdot 10^{-3}$
$t\bar{t}h$ 13 TeV	$-1.64 \cdot 10^{-2}$
$t\bar{t}h$ 14 TeV	$-1.62 \cdot 10^{-2}$
$h ightarrow \gamma \gamma$	$-2.30\cdot10^{-3}$
$h \to b \overline{b}$	0.00
$h \to W^+ W^-$	$-3.40 \cdot 10^{-3}$
$h \to ZZ$	$-3.90 \cdot 10^{-3}$
$pp \rightarrow Zh \ 13 \ {\rm TeV}$	$-5.60 \cdot 10^{-3}$
$pp \rightarrow Zh \ 14 \ { m TeV}$	$-5.50 \cdot 10^{-3}$
$pp \to W^{\pm}h$	$-4.80 \cdot 10^{-3}$
VBF	$-3.00 \cdot 10^{-3}$
$h \to 4\ell$	$-3.80 \cdot 10^{-3}$

G. Degrassi et al. , JHEP 12 (2016) 080

Jorge de Blas University of Granada

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling May 24, 2022

Jorge de Blas

University of Granada

• We evaluate the size of these corrections and provide semi-analytical expressions (in the leading-log approx.) that can be used inside fitting tools:

Operator	Process	μ_R	$\delta R_{C_i}^{fin} \; [\text{TeV}^2]$	$\delta R_{C_i}^{log} [\text{TeV}^2]$
	ggF	$\frac{m_h}{2}$	$9.91 \cdot 10^{-3}$	$2.76 \cdot 10^{-3}$
$\mathcal{O}_{Qt}^{(1)}$	$egin{array}{c} h ightarrow gg \ h ightarrow \gamma\gamma \end{array}$	m_h	$6.08 \cdot 10^{-3}$ $-1.76 \cdot 10^{-3}$	$\begin{array}{r} 2.76 \cdot 10^{-3} \\ -0.80 \cdot 10^{-3} \end{array}$
·	$t\bar{t}h$ 13 TeV $t\bar{t}h$ 14 TeV	$m_t + \frac{m_h}{2}$	$-4.20 \cdot 10^{-1} \\ -4.30 \cdot 10^{-1}$	$-2.78 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3}$
	ggF	$\frac{m_h}{2}$	$1.32 \cdot 10^{-2}$	$3.68 \cdot 10^{-3}$
$\mathcal{O}_{Ot}^{(8)}$	$egin{array}{c} h ightarrow gg \ h ightarrow \gamma\gamma \end{array}$	m_h	$8.11 \cdot 10^{-3}$ $-2.09 \cdot 10^{-3}$	$3.68 \cdot 10^{-3} \\ -1.07 \cdot 10^{-3}$
~~~ v	$t\bar{t}h$ 13 TeV $t\bar{t}h$ 14 TeV	$m_t + \frac{m_h}{2}$	$ \begin{array}{c} 6.81 \cdot 10^{-2} \\ 7.29 \cdot 10^{-2} \end{array} $	$-2.40 \cdot 10^{-3} \\ -2.48 \cdot 10^{-3}$
	ggF	$\frac{m_h}{2}$	$2.84 \cdot 10^{-2}$	$9.21 \cdot 10^{-3}$
$\mathcal{O}_{\alpha}^{(1)}$	h  ightarrow gg		$1.57 \cdot 10^{-2}$	$9.21 \cdot 10^{-3}$
-QtQb	$ \begin{array}{c} h \to \gamma \gamma \\ h \to b \overline{b} \end{array} $	$m_h$	$-1.30 \cdot 10^{-3} \\ 9.25 \cdot 10^{-2}$	$-0.78 \cdot 10^{-3} \\ 1.68 \cdot 10^{-1}$
	ggF	$\frac{m_h}{2}$	$5.41 \cdot 10^{-3}$	$1.76 \cdot 10^{-3}$
${\cal O}^{(8)}_{QtQb}$	$egin{array}{c} h  ightarrow gg \ h  ightarrow \gamma\gamma \end{array}$	$m_h$	$2.98 \cdot 10^{-3}$ $-0.25 \cdot 10^{-3}$	$\frac{1.76 \cdot 10^{-3}}{-0.15 \cdot 10^{-3}}$
	$h \to b\overline{b}$		$1.76 \cdot 10^{-2}$	$3.20 \cdot 10^{-2}$
$\mathcal{O}_{QQ}^{(1)}$	$\begin{array}{c c} t\bar{t}h \ 13 \ \mathrm{TeV} \\ t\bar{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$1.75 \cdot 10^{-3}$ $1.65 \cdot 10^{-3}$	$1.84 \cdot 10^{-3}$ $1.76 \cdot 10^{-3}$
$O^{(3)}$	$t\bar{t}h$ 13 TeV	$m_l + \frac{m_h}{m_h}$	$1.32 \cdot 10^{-2}$	$5.48 \cdot 10^{-3}$
$U_{QQ}$	$  t\bar{t}h   14 \text{ TeV}$	$m_t \vdash \overline{2}$	$1.24 \cdot 10^{-2}$	$5.30 \cdot 10^{-3}$
$\mathcal{O}_{tt}$	$\begin{vmatrix} t\bar{t}h & 13 \text{ TeV} \\ t\bar{t}h & 14 \text{ TeV} \end{vmatrix}$	$m_t + \frac{m_h}{2}$	$\frac{4.60 \cdot 10^{-3}}{4.57 \cdot 10^{-3}}$	$1.82 \cdot 10^{-3}$ $1.74 \cdot 10^{-3}$

$\delta R(C_i) = R/R^{\rm SM} - 1$	
$\delta R(C_i) = \frac{C_i}{\Lambda^2} \left( \delta R_{C_i}^{fin} + \delta R_{C_i}^{log} \log \left( \frac{\mu_R^2}{\Lambda^2} \right) \right)$	
$R=\sigma$ , $\Gamma$	

**Contrib** from h self-coupling  $(C_{i})$ 

Process	$\delta R^{fin}_{C_\phi}$	
$ggF/gg \rightarrow h$	$-3.10 \cdot 10^{-3}$	9 7
tin 13 TeV	$1.64 \cdot 10^{-2}$	Sec.
$t\bar{t}h$ 14 TeV	$-1.62 \cdot 10^{-2}$	200
$h  ightarrow \gamma \gamma$	$-2.30 \cdot 10^{-3}$	
$h \to b \overline{b}$	0.00	2
$h \to W^+ W^-$	$-3.40 \cdot 10^{-3}$	Š
$h \to ZZ$	$-3.90 \cdot 10^{-3}$	
$pp \rightarrow Zh \ 13 \ \text{TeV}$	$-5.60 \cdot 10^{-3}$	
$pp \rightarrow Zh \ 14 \ \text{TeV}$	$-5.50 \cdot 10^{-3}$	Ī
$pp \to W^{\pm}h$	$-4.80 \cdot 10^{-3}$	
VBF	$-3.00 \cdot 10^{-3}$	2
$h \to 4\ell$	$-3.80 \cdot 10^{-3}$	2

Sizable effects in ggF (dominant at LHC)...

• We evaluate the size of these corrections and provide semi-analytical expressions (in the leading-log approx.) that can be used inside fitting tools:

Operator	Process	$\mu_R$	$\delta R_{C_i}^{fin} \; [\text{TeV}^2]$	$\delta R_{C_i}^{log}  [\text{TeV}^2]$
$\mathcal{O}_{Qt}^{(1)}$	$egin{array}{c} { m ggF} \ h  ightarrow gg \ h  ightarrow \gamma\gamma \ t\bar{t}h \ { m 13 \ TeV} \end{array}$	$\frac{\frac{m_h}{2}}{m_h}$	$9.91 \cdot 10^{-3} \\ 6.08 \cdot 10^{-3} \\ -1.76 \cdot 10^{-3} \\ -4.20 \cdot 10^{-1}$	$\begin{array}{r} 2.76 \cdot 10^{-3} \\ 2.76 \cdot 10^{-3} \\ -0.80 \cdot 10^{-3} \\ -2.78 \cdot 10^{-3} \end{array}$
	$t\bar{t}h$ 14 TeV ggF	$\frac{m_{t}}{2}$	$-4.30 \cdot 10^{-1}$ $1.32 \cdot 10^{-2}$	$\frac{-2.78 \cdot 10^{-3}}{3.68 \cdot 10^{-3}}$
${\cal O}_{Qt}^{(8)}$	$egin{array}{c} h  ightarrow gg \ h  ightarrow \gamma\gamma \ tth \ 13 \ { m TeV} \ tar th \ 14 \ { m TeV} \end{array}$	$m_h$ $m_t + rac{m_h}{2}$	$8.11 \cdot 10^{-3}$ -2.09 \cdot 10^{-3} $6.81 \cdot 10^{-2}$ $7.29 \cdot 10^{-2}$	$\begin{array}{r} 3.68 \cdot 10^{-3} \\ -1.07 \cdot 10^{-3} \\ -2.40 \cdot 10^{-3} \\ -2.48 \cdot 10^{-3} \end{array}$
$\mathcal{O}_{QtQb}^{(1)}$	$ \begin{array}{c c} ggF \\ h \rightarrow gg \\ h \rightarrow \gamma\gamma \\ h \rightarrow b\overline{b} \end{array} $	$rac{m_h}{2}$ $m_h$	$\begin{array}{c} 2.84 \cdot 10^{-2} \\ 1.57 \cdot 10^{-2} \\ -1.30 \cdot 10^{-3} \\ 9.25 \cdot 10^{-2} \end{array}$	$\begin{array}{c} 9.21 \cdot 10^{-3} \\ 9.21 \cdot 10^{-3} \\ -0.78 \cdot 10^{-3} \\ 1.68 \cdot 10^{-1} \end{array}$
${\cal O}^{(8)}_{QtQb}$	$ \begin{array}{c c} \mathrm{ggF} \\ h \to gg \\ h \to \gamma\gamma \\ h \to b\overline{b} \end{array} \end{array} $	$rac{m_h}{2}$ $m_h$	$5.41 \cdot 10^{-3}$ $2.98 \cdot 10^{-3}$ $-0.25 \cdot 10^{-3}$ $1.76 \cdot 10^{-2}$	$\begin{array}{c} 1.76 \cdot 10^{-3} \\ 1.76 \cdot 10^{-3} \\ -0.15 \cdot 10^{-3} \\ 3.20 \cdot 10^{-2} \end{array}$
$\mathcal{O}_{QQ}^{(1)}$	$\begin{vmatrix} t\bar{t}h & 13 \text{ TeV} \\ t\bar{t}h & 14 \text{ TeV} \end{vmatrix}$	$m_t + \frac{m_h}{2}$	$\frac{1.75 \cdot 10^{-3}}{1.65 \cdot 10^{-3}}$	$\begin{array}{c} 1.84 \cdot 10^{-3} \\ 1.76 \cdot 10^{-3} \end{array}$
${\cal O}^{(3)}_{QQ}$	$\begin{array}{c c} t\overline{t}h \ 13 \ \mathrm{TeV} \\ t\overline{t}h \ 14 \ \mathrm{TeV} \end{array}$	$m_t + \frac{m_h}{2}$	$\frac{1.32 \cdot 10^{-2}}{1.24 \cdot 10^{-2}}$	$5.48 \cdot 10^{-3} \\ 5.30 \cdot 10^{-3}$
$\mathcal{O}_{tt}$	$\begin{vmatrix} t\bar{t}h & 13 \text{ TeV} \\ t\bar{t}h & 14 \text{ TeV} \end{vmatrix}$	$m_t + \frac{m_h}{2}$	$\frac{4.60 \cdot 10^{-3}}{4.57 \cdot 10^{-3}}$	$\frac{1.82 \cdot 10^{-3}}{1.74 \cdot 10^{-3}}$

$\delta R(C_i) = R/R^{\rm SM} - 1$	
$\delta R(C_i) = \frac{C_i}{\Lambda^2} \left( \delta R_{C_i}^{fin} + \delta R_{C_i}^{log} \log \left( \frac{\mu_R^2}{\Lambda^2} \right) \right)$	
$R=\sigma$ , $\Gamma$	

**Contrib.** from *h* self-coupling ( $C_{\phi}$ )

		•
Process	$\delta R^{fin}_{C_\phi}$	
$ggF/ag \rightarrow h$	$-3.10 \cdot 10^{-3}$	بغ ت
$t\bar{t}h$ 13 TeV	$-1.64 \cdot 10^{-2}$	egr
$t\bar{t}h$ 14 TeV	$-1.62 \cdot 10^{-2}$	ass
$h  ightarrow \gamma \gamma$	$-2.30 \cdot 10^{-3}$	i et
$h \to b\overline{b}$	0.00	<u>a</u>
$h \to W^+ W^-$	$-3.40 \cdot 10^{-3}$	ے
$h \to ZZ$	$-3.90 \cdot 10^{-3}$	₫
$pp \rightarrow Zh \ 13 \ {\rm TeV}$	$-5.60 \cdot 10^{-3}$	2 2
$pp \rightarrow Zh \ 14 \ \text{TeV}$	$-5.50 \cdot 10^{-3}$	
$pp \to W^{\pm}h$	$-4.80 \cdot 10^{-3}$	JIQ
VBF	$-3.00 \cdot 10^{-3}$	b0
$h \to 4\ell$	$-3.80 \cdot 10^{-3}$	Ĉ

Sizable effects in ggF (dominant at LHC)... ... and *tth* (strongest dependence on  $C_{\phi}$ )...

# Interplay between 4 Top operators and h³ in LHC Higgs fits

- Not attempting global fit. Only interested in studying effects of NLO corrections from 4-quark operators in Higgs data and their interplay with the h self-coupling
- Toy fits with few parameters to Run 2 data:
  - ✓ We evaluated linear vs. leading quadratic effects from 4-fermion contrib.
    - ▶ ~10% difference in the results  $\rightarrow$  We keep only linear terms
  - ✓ We compare finite and log terms: "fin" ( $C_i$  renorm. at process scale) vs. full result ( $C_i$  renorm. at  $\Lambda$ )
  - ✓ Interplay with *h* self-coupling: linear vs. quad. effects in  $C_{\phi}$ :

$$\delta R_{\lambda_3} \equiv \frac{R_{\rm NLO}(\lambda_3) - R_{\rm NLO}(\lambda_3^{\rm SM})}{R_{\rm LO}} = -2 \frac{C_{\phi} v^4}{\Lambda^2 m_h^2} C_1 + \left( -4 \frac{C_{\phi} v^4}{\Lambda^2 m_h^2} + 4 \frac{C_{\phi}^2 v^8}{m_h^4 \Lambda^4} \right) C_2 \qquad C_2 = \frac{\delta Z_h}{1 - \left( 1 - \frac{2C_{\phi} v^4}{\Lambda^2 m_h^2} \right)^2 \delta Z_h}$$
  
G. Degrassi et al. , JHEP 12 (2016) 080

- ✓ We also compare the bounds with those from other observables:
  - Top, EWPO, Flavour

- Toy fits to each 4-Quark operator Wilson coefficient, together with  $C_{\phi}$
- Results marginalising over  $C_{\phi}$



L. Silvestrini and M. Valli, Phys. Lett. B 799 (2019) 135062

• Toy fits to each 4-Quark operator Wilson coefficient, together with  $C_{\phi}$ 



L. Silvestrini and M. Valli, Phys. Lett. B 799 (2019) 135062

• Toy fits to each 4-Quark operator Wilson coefficient, together with  $C_{\phi}$ 



L. Silvestrini and M. Valli, Phys. Lett. B 799 (2019) 135062

- Toy fits to each 4-Quark operator Wilson coefficient, together with  $C_{\phi}$
- Impact on extraction of  $C_{\phi}$ : Results marginalising over 4-Quark operator



Jorge de Blas University of Granada

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling May 24, 2022

- Toy fits to 4-Quark operator Wilson coefficients together with  $C_{\phi}$
- Impact on extraction of  $C_{\phi}$ : Correlations with 4-Quark operator





#### Impact ~3.5x

Single operator fit:  $C_{\phi} \sim [-22.0, 5.0]$ 

Impact ~1.5x



- Projections at the HL-LHC:
  - ✓ Same considerations apply in terms of the interpretation of single Higgs measurements to obtain  $h^3$
  - ✓ We illustrate the improved constraining power to bound 4-Top operators at HL-LHC, via single parameter fits:



Roughly ~2x improvement

## Warning: Remember, not a global fit! But can be relevant for BSM scenarios contributing dominantly through these operators

Jorge de Blas University of Granada

Higgs probes of top-quark contact interactions at the LHC and interplay with the Higgs self-coupling May 24, 2022

## **Comments on Future e+e- Higgs Factories**

- Production at  $e^+e^-$  Higgs factories is via electroweak interactions:
  - $\checkmark$  Zh and WBF not corrected by 4-Top operators at NLO
  - ✓ Above the *tth* threshold, however, 4-Top interactions will enter at NLO (as in  $qq \rightarrow tth$ )



- Decay is however affected in the same way as in Hadron colliders...
- ...but the possibility of an inclusive measurement of the Zh cross section facilitates the interpretation of Higgs measurements in terms of the h³ coupling
  - ✓ Currently studying whether is possible to obtain a model independent determination in a global fit (LO + NLO from  $h^3$  and 4-Top ops)
  - ✓ Still a partial result, since other interactions may "contaminate" the NLO determination of the h³ coupling
    - e.g. 2-lepton 2-Top operators  $\Rightarrow$  Require *tt* production at lepton collider

### **Comments on Future e+e- Higgs Factories**

- ...but the possibility of an inclusive measurement of the Zh cross section facilitates the interpretation of Higgs measurements in terms of the  $h^3$  coupling
  - ✓ Currently studying whether is possible to obtain a model independent determination in a global fit (LO + NLO from  $h^3$  and 4-Top ops)
  - ✓ Still a partial result, since other interactions may "contaminate" the NLO determination of the  $h^3$  coupling
    - e.g. 2-lepton 2-Top operators  $\Rightarrow$  Require *tt* production at lepton collider
    - Studied for (non-4 fermion) Top operators in

G. Durieux, J. Gu, E. Vryonidou, C. Zhang, Chin. Phys. C 42 (2018) 12, 123107



#### Need more observables $\Rightarrow$ Is it possible to close a GLOBAL fit in the d-6 SMEFT at NLO ?

# **Summary and Conclusions**

## **Summary and Conclusions**

- Precision measurements provide a powerful tool to test indirectly physics beyond the Standard Model in a Model-Independent (MI) way  $\Rightarrow$  SMEFT
- SMEFT LO → NLO: increase in complexity but may bring sensitivity to several interactions of physical interest, difficult to test directly:
  - ✓ Most famous example is <u>Higgs self-coupling in single Higgs</u>
  - ✓ Proliferation of SMEFT interactions at NLO difficults interpretation unless:
    - ▶ It's done within particular scenarios (e.g. only  $h^3$  is generated) ← Not MI
    - ► All other operators are well constrained experimentally ← Not the case
- Towards SMEFT@NLO interpretation: We evaluated NLO effects of 4-quark operators in single Higgs observables (only another piece of the global picture!):
  - ✓ Sizable effect in LHC observables + poor bounds → Need to be taken into account in NLO SMEFT single-Higgs studies of  $h^3$
  - ✓ Also relevant, via Higgs decays, for physics at future  $e^+e^-$  Higgs factories
- In general, many interactions (in particular involving e.g. Top) enter at NLO in single H (and EW) → Difficult to use, in isolation, as robust probes of a particular interaction entering only at NLO (plus can affect LO results!)

1st compute  $\Rightarrow$  Need to close the global fit  $\Rightarrow$  What observables are needed?