Long-Lived Particle Search with Lepton Colliders

> <u>Yulei Zhang</u>^[1], Cen Mo^[1], Liang Li^[1] 1 Shanghai Jiao Tong University

Outline

Beyond the Standard Model

- Why LLPs interesting
- Search for LLPs at future collider
 - Machine Learning
- Preliminary results
- Summary

What is a long-lived particle?

Object (neutral or charged) decaying a macroscopic and reconstructible distance from IP Signal signature of a long-lived particle:

Neutral LLP decays are a spectacular signature, and the **burst of energy** appearing out of nowhere sets it apart from the collision point.

LLP Searches at Lepton Colliders

2-jet final state

4-jet final state (New)

- Energy: 240 GeV
- Mass of SS1: 0.1-50 GeV
- Mass of SS2: 0.1-50 GeV
- SS1, SS2's lifetime $\tau = R_{out}/c = 6m/c = 20 ns$

Basic Setup

- Full simulation with CEPC official software (V4)
- The decay vertex of LLPs: $0 \le r_{decay} \le 6$ [m]
- Signal sample generated by MadGraph5 and showered by Pythia8
 - Thanks to Zhen LIU, Jia LIU and Xiaoping WANG for providing the long-lived particle model.

	# of Events simulated	# of Events in 5.6 ab^{-1}
Signal: $Z \rightarrow \overline{q}q$, $h \rightarrow SS1 + SS2$ (2-jet)	$\sim 1.0 imes 10^6$	/
Signal: $Z \rightarrow \overline{\nu}\nu$, $h \rightarrow SS1 + SS2$ (2-jet)	$\sim 1.0 \times 10^6$	/
Signal: $Z \rightarrow \overline{q}q$, $h \rightarrow SS1 + SS2$ (4-jet)	$\sim 1.0 \times 10^6$	/
Signal: $Z \rightarrow \overline{\nu}\nu$, $h \rightarrow SS1 + SS2$ (4-jet)	$\sim 1.0 \times 10^6$	/
$e^+e^- ightarrow q \overline{q}$	$(\sim 0.99 \times 10^7)^*$	2.5×10^{8}
$e^+e^- \rightarrow Zh$ (Standard Model)	$\sim 1.37 \times 10^6$	1.0×10^{6}
$e^+e^- \rightarrow W/Z$	$\sim 1.3 \times 10^7$	1.6×10^{7}

* Due to the limited computing power, $\sim 10^7$ events were simulated so far

Deep Residual Network, ResNet

- Firstly, appeared in the ILSVRC 2015 classification challenges (ImageNet Large Scale Visual Recognition Challenge)
- ResNet18, ResNet50, ResNet101...

Configuration

- Mapping the raw detector information to a 2D image
- Input Format: image with resolution of $(R, \phi) = 200 \times 200$ and 1 to 3 channel(s)
 - $R_i = i \times \Delta R_i$, R starts from 0 m to 8 m.
 - ϕ starts from $-\pi$ to π
 - Energy is the sum of both Tracker hits and Calorimeter hits. ٠
 - Time is the maximum ΔT (E > 0.1 GeV) within (R, ϕ) pixel
- Model: ResNet18 (Multi-Class Classification), ResNet50 (Vertex Finding)

Cross Entropy Loss: $loss = -[\omega_0 * y_0 \log(x_0) + \omega_1 * y_1 \log(x_1) + \omega_2 * y_2 \log(x_2)]$

Class 0: 2-fermion bkg	Class 1:4-fermion bkg	С
$\omega_0 = 0.5$	$\omega_1 = 0.25$	

Long-Lived Particle

Training on LLP 2-jet

0.7 **CEPC** Simulation Preliminary √s = 240 GeV $e^+e^- \rightarrow ZH \rightarrow q\overline{q}/v\overline{\nu} + X_1 + X_2$ 0.6 $X_1 \rightarrow q\overline{q}, X_2 \rightarrow v\overline{v}$ 0.5 - train loss 0.4 - test loss 0.3 0.2 0 2 1 3 6 Epoch

Optimized Cut on network's outputs

	Passed Event	Total Event	ε
Signal: ${m Z} o {m q} {m q}$, $h o SS1 + SS2$ (2-jet)	308,274	424,100	72.69%
Signal: $Z \rightarrow \overline{\nu} \nu$, $h \rightarrow SS1 + SS2$ (2-jet)	325,550	449,160	72.47%
Class 0: 2-fermion background	0	7,665,900	0.00%
Class 1: 4-fermion background	0	13,033,405	0.00%

Training on LLP 4-jet

0.38 0.36 **CEPC** Simulation Preliminary √s = 240 GeV 0.34 $e^+e^- \rightarrow ZH \rightarrow q\overline{q}/v\overline{v} + X_1 + X_2$ $X_1 \rightarrow q\overline{q}, X_2 \rightarrow q\overline{q}$ 0.32 0.3 class1 score - train loss 0.28 - test loss 0.26 0.24 0.22 0.2 0 5 2 3 4 6 Epoch

Optimized Cut on network's outputs

	Passed Event	Total Event	ε
Signal: $Z \rightarrow \overline{q}q$, $h \rightarrow SS1 + SS2$ (4-jet)	398,846	415,780	95.93%
Signal: $Z ightarrow \overline{oldsymbol{ u}} u$, $h ightarrow SS1 + SS2$ (4-jet)	427,262	434,710	98.29%
Class 0: 2-fermion background	0	7,665,900	0.00%
Class I: 4-fermion background	0	13,033,405	0.00%

Exclusion Limit

Channel	95% CL upper limit on BR $(h \rightarrow XX)$
2-jet	1.15×10^{-6}
4-jet	$8.66 \times 10 - 7$
Combined	7.58×10^{-7}

 $\widehat{\times}$

↑

ч) На 10^{−1}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

•

•

Sensitivity (compared with previous 2-jet analysis)

- Previous best limit: ~1 × 10⁻⁵ (5.6 ab⁻¹), Current best limit: ~1 × 10⁻⁶ (20 ab⁻¹)
- Main improvement on geometry acceptance: r_{decay} from [1,6] to (0,6]

- Long-Lived Particle (2-jet and 4-jet final states) study done with future lepton collider
 - current results based on CEPC_v4 geometry setup
- First attempt to apply AI image recognition techniques to raw detector hits
 - Very good sensitivity reached (> 10⁻⁷) with (expected) 4 × 10⁶ Higgs statistics compared to current LHC limits (~ 10⁻⁴, expected HL-LHC limits of > 10⁻⁶).
 - Other ML possibilities: vertex finding, momentum finding...
- Future improvement on geometry acceptance: extra detectors
- Paper submission in preparation (Snowmass summer meeting)

Thanks