

# Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC simulation

Zhen Wang, Xu-Liang Zhu, Yanda Wu, Yuwen Zhang, Elham Khoda, Shih-Chieh Hsu, Shu Li, M. J. Ramsey-Musolf

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022 2022-05-25



# **Physics Motivation**

J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton *Phys. Rev. D* **101**, 115035 (2020).



• We are interested in the strong first-order electroweak phase transition in the "SM Higgs + Light Real Singlet Scalar" model:

$$V = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{2}a_1 |H|^2 S + \frac{1}{2}a_2 |H|^2 S^2 + b_1 S + \frac{1}{2}b_2 S^2 + \frac{1}{3}b_3 S^3 + \frac{1}{4}b_4 S^4 + \frac{1}{2}b_2 S^2 + \frac{1}{3}b_3 S^3 + \frac{1}{4}b_4 S^4 + \frac{1}{2}b_4 S^4 + \frac{1}{2}b_4$$





### **Theoretical Prospects**

![](_page_2_Picture_1.jpeg)

![](_page_2_Figure_2.jpeg)

J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton *Phys. Rev. D* **101**, 115035 (2020). Z. Liu *et al., Chinese Phys. C* **41**, 063102 (2017).

![](_page_2_Picture_5.jpeg)

# **Sample Production**

![](_page_3_Picture_1.jpeg)

- **Signal:** The samples are generated at 240 GeV. 50000 events per mass point from 5 to 60 GeV for electron and muon channel separately
- Generator: Madgraph5 and Pythia8
- Simulation and reconstruction: cepcsoft 0.1.1 , CEPC\_v4

![](_page_3_Figure_5.jpeg)

TSUNG-DAO LEE INSTITUTE

**Fig.** Mass distribution of  $h_1$  when  $m_1 = 60$ GeV

![](_page_3_Picture_8.jpeg)

# **Sample Production**

![](_page_4_Picture_1.jpeg)

 Background : 2-Fermion, 4-Fermion, Higgs involved process as our background. Expect luminosity : 5.0 ab<sup>-1</sup>.

| Process                    | $\int L$     | Final states   | X-sections (fb) | Comments                                 | decay mode                    | branching ratio       | relative uncertainty |
|----------------------------|--------------|----------------|-----------------|------------------------------------------|-------------------------------|-----------------------|----------------------|
| Higgs signal               | 5 ab $^{-1}$ | ffH            | 203.66          | all signals                              | $H \rightarrow b \bar{b}$     | 57.7%                 | +3.2%, -3.3%         |
|                            | 5 ab $^{-1}$ | $e^+e^-H$      | 7.04            | including ZZ fusion                      | $H \rightarrow c \bar{c}$     | 2.91%                 | +12%, -12%           |
|                            | 5 ab $^{-1}$ | $\mu^+\mu^- H$ | 6.77            |                                          | $H \rightarrow \tau^+ \tau^-$ | 6.32%                 | +5.7%, -5.7%         |
|                            | 5 ab $^{-1}$ | $	au^+	au^- H$ | 6.75            |                                          | $H \to \mu^+ \mu^-$           | $2.19 \times 10^{-4}$ | +6.0%, -5.9%         |
|                            | 5 ab-1       | $ u ar{ u} H$  | 46.29           | all neutrinos (ZH+WW fusion)             | $H \to WW^*$                  | 21.5%                 | +4.3%, -4.2%         |
|                            | 5 ab $^{-1}$ | $a ar{a} H$    | 136.81          | all quark pairs (Z $ ightarrow qar{q}$ ) | $H \rightarrow ZZ^*$          | 2.64%                 | +4.3%, -4.2%         |
|                            |              |                |                 |                                          | $H  ightarrow \gamma \gamma$  | $2.28 \times 10^{-3}$ | +5.0%, -4.9%         |
| 2 fermion backgounds       |              |                |                 | $H \rightarrow Z\gamma$                  | $1.53 \times 10^{-3}$         | +9.0%, -8.8%          |                      |
| Process                    | $\int L$     |                | Final states    | X-sections (fb) Comments                 | $H \rightarrow gg$            | 8.57%                 | +10%, -10%           |
| $e^+e^-  ightarrow e^+e^-$ | 5 ab         | 0-1            | $e^+e^-$        | 24770.90                                 | <br>$\Gamma_H$                | 4.07 MeV              | +4.0%, -4.0%         |

https://iopscience.iop.org/article/10.1088/1674-1137/43/4/043002/pdf http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/#240-gev lxslc7 : /cefs/data/DstData/CEPC240/CEPC\_v4\_update

![](_page_4_Picture_6.jpeg)

![](_page_5_Picture_1.jpeg)

- Same flavor opposite sign lepton pair with energy larger than 20 GeV
- Invariant lepton pair mass should be within the Z mass window [77.5,104.5] GeV
- Recoiled mass of the lepton pair system should be within [124,140] GeV
- 4 jets are required to be reconstructed. Reconstructed S particle is decided by pairing them 2 by 2 and find the set with smallest mass difference.
- Number of energetic particles(energy > 0.4 GeV) in the 4jets should be larger than 40
- B-inefficiency : GBDT-based b-jet tagging algorithm.  $L_{b1}$ ,  $L_{b2}$ ,  $L_{b3}$ ,  $L_{b4}$  should satisfy  $Log10\left(\frac{L_{b1} \times L_{b2} \times L_{b3} \times L_{b4}}{L_{b1} \times L_{b2} \times L_{b3} \times L_{b4} + (1-L_{b1}) \times (1-L_{b2}) \times (1-L_{b3}) \times (1-L_{b4})}\right) < -4.0$

Thanks to Yu Bai. <u>Y. Bai *et al., Chinese Phys. C* **44**, 013001 (2020).</u> TSUNG-DAO LEE INSTITUTE

![](_page_5_Picture_9.jpeg)

#### **Cut Based Approach**

![](_page_6_Picture_1.jpeg)

• Signal Selection Efficiencies:

• Signal Distribution:

![](_page_6_Figure_4.jpeg)

![](_page_6_Picture_5.jpeg)

![](_page_6_Picture_6.jpeg)

### **Cut Based Approach**

![](_page_7_Picture_1.jpeg)

![](_page_7_Figure_2.jpeg)

TSUNG-DAO LEE INSTITUTE

M<sub>bb</sub>[GeV]

![](_page_7_Picture_5.jpeg)

![](_page_8_Picture_0.jpeg)

![](_page_8_Picture_1.jpeg)

- Trained the variables after some loose selections :
- Same flavor opposite sign lepton pair with energy larger than 20 GeV •
- Invariant lepton pair mass should be within the Z mass window [77.5,104.5] GeV
- Recoiled mass of the lepton pair system should be within [124,140] GeV

#### 10 BDTs are trained with 10 different signal samples from 15GeV to 60 GeV

• lep pt Variables

used in

training

- jet\_energy
- jet\_inv\_mass
- opening\_angle
- jet\_recoil\_m
  rgy
  S\_mass
  btag\_ineff • jet recoil mass

  - Y12

- Y23
- Y34
- Y45
- Y56

Output of BDT classifier is used as the discriminant and used in the fitting and limit setting. TSUNG-DAO LEE INSTITUTE

![](_page_8_Picture_20.jpeg)

## **BDT Approach**

![](_page_9_Picture_1.jpeg)

![](_page_9_Figure_2.jpeg)

![](_page_9_Figure_3.jpeg)

![](_page_9_Figure_4.jpeg)

BDT Score

# **Systematic Uncertainty**

![](_page_10_Picture_1.jpeg)

- Systematic uncertainty from luminosity and lepton identification are considered to be small.
- Event yield of all kinds of backgrounds are conservatively considered by varying event yields by 5% for dominant process and 100% for other processes.
- Flavor tagging uncertainty is estimated on ZZ->qq+mumu control sample and yields 0.78% for 2jet analysis, we conservatively set this term to 1%.
- Jet energy resolution is estimated by varying energy of each jet with a Gaussian function according to CEPC calorimeter energy resolution.

P.-Z. Lai *et al* 2021 *JINST* **16** P07037

![](_page_10_Picture_7.jpeg)

# Limit Setting with TRExFitter

![](_page_11_Picture_1.jpeg)

• Current Limits of cut-based and BDT approach.

![](_page_11_Figure_3.jpeg)

![](_page_11_Picture_4.jpeg)

# Summary

![](_page_12_Picture_1.jpeg)

- A search for exotic decays of the Higgs boson into a pair of spin-zero singlet-like particles is done with 5 ab-1 simulation data with CEPC.
- Snowmass submission (EF02) https://arxiv.org/abs/2203.10184
- BDT based analysis gives better sensitivity than the cut-based analysis approach.
- This realistic study yields a weaker exclusion limit compared to the theoretical projections
- The study with 4b final states could conclusively test the possibility of an SFOEWPT in the extended-SM with a light singlet of mass as low as 20 GeV.

# **Future Plans**

- Boosted and resolved topology in the S particle decay.
- Jet energy resolution uncertainty

![](_page_12_Picture_10.jpeg)

#### Thanks!

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_3.jpeg)

### **Backup**

![](_page_14_Picture_1.jpeg)

#### • Jet energy resolution reference.

![](_page_14_Figure_3.jpeg)

#### P.-Z. Lai et al 2021 JINST 16 P07037

Jet energy resolution is performed by extrapolating the curve to low energy region and apply smearing.

https://doi.org/10.1088/1748-0221/16/07/P07037

![](_page_14_Picture_8.jpeg)

### **Backup**

![](_page_15_Picture_1.jpeg)

• Backup

| $m_1[GeV]$ | <i>a</i> <sub>2</sub> | $b_3$         | $b_4$             | $D_width$  | BR         |
|------------|-----------------------|---------------|-------------------|------------|------------|
| 5          | 0.00379269019         | 0.00087284094 | 3.16227766017e-05 | 7.3774e-05 | 0.01780479 |
|            | 0.00033598183         | 0.00693322201 | 8.91250938133e-07 | 1.0348e-06 | 0.00025421 |
| 10         | 0.02511886432         | 0.01954047457 | 0.00125892541179  | 0.0030277  | 0.42627589 |
| 10         | 0.00199526231         | 0.04908345294 | 1.58489319246e-05 | 2.1351e-05 | 0.00521904 |
| 15         | 0.05011872336         | 0.00389883725 | 0.00446683592151  | 0.011795   | 0.73632455 |
| 15         | 0.00375837404         | 0.19540474574 | 7.94328234724e-05 | 5.9206e-05 | 0.01422012 |
| 20         | 0.00630957344         | 0.49083452948 | 0.00025118864315  | 0.0001866  | 0.04347394 |
| 25         | 0.01                  | 0.97934363956 | 0.00063095734448  | 0.00044524 | 0.09859974 |
| 30         | 0.01678804018         | 1.55215506742 | 0.00125892541179  | 0.0011898  | 0.22613126 |
| 35         | 0.02511886432         | 2.46          | 0.00251188643151  | 0.0025006  | 0.38033656 |
| 40         | 0.02660725059         | 3.89883725345 | 0.00398107170553  | 0.0025799  | 0.38771480 |
| 45         | 0.04216965034         | 4.90834529482 | 0.00630957344480  | 0.0058611  | 0.58957125 |
| 50         | 0.04216965034         | 7.77920304401 | 0.01              | 0.0050107  | 0.55126677 |
| 55         | 0.06309573445         | 9.79343639562 | 0.01584893192461  | 0.0089054  | 0.68549957 |
| 60         | 0.05956621435         | 15.5215506742 | 0.02511886431509  | 0.0045989  | 0.53001523 |

**Table.** Parameters and related BRs that satisfy a strong 1-st order electroweak phase transition. The orange shading represent parameter when BR is at its upper bound, and blue shading represent the lower bound.

| Mass  | BDT Limits | Theory |
|-------|------------|--------|
| 20GeV | 0.0005     | 0.0006 |
| 30GeV | 0.0006     | 0.0005 |

Limits from BDT and Theory

![](_page_15_Picture_7.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

• Backup

10 BDTs are trained with 10 different signal samples from 15GeV to 60 GeV

Number of events in one training:

| • | Number of training and testing events   |            |
|---|-----------------------------------------|------------|
|   |                                         |            |
| • | Signal training events :                | 30000      |
| • | Signal testing events :                 | 7806       |
|   | Signal training and testing events:     | 37806      |
|   | Dataset[dataset] : Signal due to the    | e preselec |
|   | Background training events :            | 400000     |
| • | Background testing events :             | 166345     |
| : | Background training and testing events: | 566345     |
|   |                                         |            |

![](_page_16_Picture_6.jpeg)