

Fragmentation functions of heavy hadrons at CEPC

Ruilin Zhu (朱瑞林)

Nanjing Normal University May 2022

2nd Joint Workshop (online) of the CEPC Physics, Software and New Detector Concept

- Introduction of Fragmentation functions(FFs)
- Opportunities of fragmentation functions of heavy hadrons at CEPC

➢ Summary

Welcome theorists and experimentalists join the studies of FFs of heavy hadrons at CEPC

Introduction

Fragmentation Functions (FFs) describe the parton hadronization process (nonperturbative but universal) Fundamental to understand the QCD Color-Confinement

FFs
$$D_{H/i}(z,\mu)$$

FFs: probability densities for finding a hadron with certain momentum in the time-like parton

PDFs
$$f_{i/H}(x,\mu)$$

$$k = (xp^+, \frac{m_i^2 + \mathbf{k}_\perp^2}{2k^+}, \mathbf{k}_\perp)$$

PDFs: probability densities for finding a parton with certain momentum in the nearly light-like hadron

Fragmentation functions(FFs)

$$\sum_{H}\int_{0}^{1}dzzD_{i}^{H}(z,\mu)=1\;.$$

Berman et. al, PRD4,11(1971); Field-Feynman,PRD15,9(1977); Collins-Soper,NPB193,381(1981).

Evolution Equation (DGLAP)

 $P_{qq}^{(0)}$

$$\frac{\partial}{\partial \ln Q} D_{H/i} \left(z, Q^2 \right) = \sum_j \int_z^1 \frac{dx}{x} \frac{\alpha_S}{2\pi} P_{ji}^t \left(x, \alpha_S \right) D_{H/j} \left(\frac{z}{x}, Q^2 \right)$$
$$\frac{\partial}{\partial \ln Q} f_{i/H} \left(x, Q^2 \right) = \sum_j \int_x^1 \frac{dz}{z} \frac{\alpha_S}{2\pi} P_{ji}^s \left(z, \alpha_S \right) f_{j/H} \left(\frac{x}{z}, Q^2 \right)$$
$$P_{ji}(z, \alpha_s) = \sum_{k=0} a_s^{k+1} P_{ji}^{(k)}(z), \qquad a_s = \alpha_s / (4\pi)$$
$$P_{gg}^{(0)} \qquad P_{gg}^{(0)} \qquad P_$$

н.

At NLO, the splitting functions are different in DGLAP equation for FFs and PDFs **Difficulties for FFs**

- > Nonperturbative
- ➤ Time-like correlators
- ≻ Need to sum unobserved states X
- Can not be calculated in discretized Euclidean space-time
- Attempts: Model-dependent(mostly) or rely on experimental data

QCD Factorization

 $\sigma^{\ell N \to \ell h X} = \hat{\sigma} \otimes PDF \otimes FF,$

 $\sigma^{pp \to hX} = \hat{\sigma} \otimes PDF \otimes PDF \otimes FF$

Take from H. Khanpour

FFs for light hadrons

FFs for light hadrons

CEPC has less advantage for studies on FFs of light hadrons, but can double-check the previous measurements at LEP,Belle, and eP colliders

FFs for light hadrons

Run at 360GeV, CEPC covers more region than other ee collisions

Opportunities of FFs of Heavy Hadrons at CEPC $e^+ + e^- \rightarrow H + X$ $e^+ \qquad e^+ \qquad e^+ \qquad e^+ \qquad e^- \qquad e^-$

$$d\sigma(e^{+} + e^{-} \to H + X) = \sum_{i} \int_{0}^{1} dz D_{i}^{H}(z,\mu) d\hat{\sigma}_{e^{+} + e^{-} \to i+X}(z,s,\mu) ,$$

$$\frac{d\sigma(e^+ + e^- \to H(p) + X)}{dz} = \sum_i D_i^H(z,\mu) d\hat{\sigma}_{e^+ + e^- \to i(k_i) + X}(z,s,\mu) ,$$

$$z = rac{p_H^+}{k_i^+} = rac{E_H + P_H^Z}{E_i + k_i^Z}$$
 $k = (k^+, rac{k^2}{2k^+}, \mathbf{0}_\perp)$
 $p = (zk^+, rac{m_H^2 + \mathbf{p}_\perp^2}{2k^+}, \mathbf{p}_\perp)$

Opportunities of FFs of Heavy Hadrons at CEPC

Advantage for the studies on FFs of Heavy hadrons at CEPC:

- Direct measurements of FFs of heavy-light, double-heavy hadrons with clear background
- ➤ Test the Fragmentation mechanisms、 Color-Confining

Test the QCD factorization formulae (Refactorization in doubly heavy hadrons)

Disvovery potentials for doubly/triply heavy hadrons (or exotic hadrons)

Take from F. Sefkow

FFs for Heavy-Light hadrons

T. Kneesch et. al, NPB799,34(2008)

Fragmentation model:

$$D_{i\to D}(z, \mu_0) = N_i z^{-(1+\gamma_i^2)} (1-z)^a \exp(-\gamma_i^2/z),$$

5

~1 nb for D meson production at CEPC (91 GeV)
~10^9 D meson events for 1ab^(-1) data

$$\begin{split} D_{b \to B_{c}^{(*)}}(z;\mu) &= \frac{z^{d-3}}{4N_{c}} \sum_{X} \int_{-\infty}^{\infty} \frac{\mathrm{d}x^{-}}{2\pi} \mathrm{e}^{-\mathrm{i}p^{+}x^{-}/z} \\ &\times \mathrm{Tr} \Big[\not n \langle 0 | W(0) b(0) | B_{c}^{(*)}(p), X \rangle \\ &\times \langle B_{c}^{(*)}(p), X | \bar{b}(x^{-}n) W^{\dagger}(x^{-}) | 0 \rangle \Big] \\ &= \frac{z^{d-3}}{4N_{c}} \sum_{X} \delta(p^{+}/z - p^{+} - p_{X}^{+}) \\ &\times \mathrm{Tr} \Big[\not n \langle 0 | W(0) b(0) | B_{c}^{(*)}(p), X \rangle \\ &\times \langle B_{c}^{(*)}(p), X | \bar{b}(0) W^{\dagger}(0) | 0 \rangle \Big], \end{split}$$

FFs can be perturbatively calculated in NRQCD

Previous calculations: Falk-Luke-Savage-Wise, PLB 312,486(1993) ;Braaten-Cheung -Yuan, PRD48,4230(1993);Chen, RPD48,11(1993);Ma,PLB332,398(1994) For double parton FFs: Ma-Qiu-Zhang,PRD89,094029(2014); For relativistic corrections: Sang-Chen, PRD80,014013(2009); For gluon fragmentation: Zheng-Chang-Wu,2112.10520; Feng-Jia-Yang, 2112.15569; For P wave states and heavy diquarks: Tao-Cao-Xiao-Zhu, to be prepared.

LO Results, mu~ from mQ to 2mQ; Using them, we can calculate the cross section

~5 pb for eta_c or J/psi production at CEPC (90GeV)

~5*10^6 eta_c or J/psi events for 1ab^(-1) data

ORMAL

FFs for Doubly heavy baryons

$$d\sigma(e^{+} + e^{-} \to \Xi_{cc} + X) \propto \int_{0}^{1} dz D_{cc}^{\Xi_{cc}}(z,\mu) d\hat{\sigma}_{e^{+} + e^{-} \to [cc] + X}(z,s,\mu) ,$$

$$d\sigma(e^{+} + e^{-} \to [cc] + X) = \sum_{i} \int_{0}^{1} dz D_{i}^{[cc]}(z,\mu) d\hat{\sigma}_{e^{+} + e^{-} \to i + X}(z,s,\mu) ,$$

Fragmentation processes:

(1)a heavy quark fragmented into a diquark with certain probability;

$$D_c^{[cc]^{[\bar{3}]}}(z,\mu)|_{LO} = \frac{64\psi_{[cc]}^2(0)(z-1)^2 z \left(5z^4 - 32z^3 + 72z^2 - 32z + 16\right)\alpha_s^2(\mu)}{27m_{[cc]}^3(z-2)^6}$$

(2)a heavy diquark fragmented into doubly heavy baryon with certain probability; (Similar to b->B)

$$D_{[cc]\to\Xi_{cc}}(z,\mu_0) = N_i z^{-(1+\gamma_i^2)} (1-z)^a \exp\left(-\gamma_i^2/z\right)$$

Tao-Cao-Xiao-Zhu, to be prepared.

~1 pb for diquark [cc] production at CEPC (90GeV)

~10^6 diquark [cc] events for 1ab^(-1) data

then

~0.05-0.3 pb for Xi_cc and T_cc production at CEPC (90GeV)

~10^4-10^5 Xi_cc and T_cc events for 1ab^(-1) data

Summary

22

Fragmentation Functions of heavy hadrons: study them at CEPC (91GeV); 10^8-10^9 events for heavy-light hadron; 10^5-10^7 events for doubly heavy hadrons.

At CEPC (91GeV), we expect:

- ✓ Measure the FFs for heavy hadrons directly
- \checkmark Test the fragmentation mechanism
- ✓ Discovery potentials for unobserved doubly/triply hadron

Thank you very much!