

Nonstandard neutrino interactions at electron colliders

Jiajun Liao (廖佳军) Sun Yat-sen University

In collaboration with Yu Zhang,

based on Phys. Rev. D 104, 035043 (2021) [arXiv:2105.11215 ]

Joint Workshop of the CEPC Physics, Software and New Detector Concept 05/25/2022

- Introduction to NSI
- Current constraints on NSI
- NSI at Belle II, STCF, CEPC
- Summary

- Introduction to NSI
- Current constraints on NSI
- NSI at Belle II, STCF, CEPC
- Summary

#### **Portal to New Physics**



# Vector Portal $F_{\mu\nu}X^{\mu\nu}$ Higgs Portal $H^{\dagger}H\phi^{\dagger}\phi$ Neutrino Portal $HLN_R$

Only three *renormalizable* portals in the Standard Model

Ballet, Hostert, Pascoli, 1903.07589

#### **Nonstandard Interactions**



#### Matter Effects



C N A

Modification of matter potential

$$i\frac{d}{dt}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \frac{1}{2E} \begin{bmatrix} U\begin{pmatrix}0 & 0 & 0\\0 & \Delta m_{21}^{2} & 0\\0 & 0 & \Delta m_{31}^{2} \end{bmatrix} U^{\dagger} + A \begin{pmatrix}1 + \varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau}\\\varepsilon_{e\mu}^{*} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau}\\\varepsilon_{e\tau}^{*} & \varepsilon_{\mu\tau}^{*} & \varepsilon_{\tau\tau} \end{pmatrix} \end{bmatrix} \begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix}$$
  
Effective coefficient  $\varepsilon_{\alpha\beta} \equiv \sum_{f,C} \varepsilon_{\alpha\beta}^{fC} \frac{N_{f}}{N_{e}}$   $A \equiv 2\sqrt{2}G_{F}N_{e}E$   
On earth  $N_{u} = N_{d} = 3N_{e}$ 

## Indication of NSI



#### NSI at future oscillation experiments



- Introduction to NSI
- Current constraints on NSI
- NSI at Belle II, STCF, CEPC
- Summary

### Constraints on NSI w/ u,d

|                                | Total Rate                   | Data Release t+E             | Our Fit t+E Chicago                        | Our Fit t+E Duke                           |  |  |  |  |  |
|--------------------------------|------------------------------|------------------------------|--------------------------------------------|--------------------------------------------|--|--|--|--|--|
| $\varepsilon^{u}_{ee}$         | $\left[-0.012, +0.621 ight]$ | [+0.043, +0.384]             | [-0.032, +0.533]                           | [-0.004, +0.496]                           |  |  |  |  |  |
| $\varepsilon^{u}_{\mu\mu}$     | [-0.115, +0.405]             | [-0.050, +0.062]             | $[-0.094, +0.071] \oplus [+0.302, +0.429]$ | $[-0.045, +0.108] \oplus [+0.290, +0.399]$ |  |  |  |  |  |
| $\varepsilon^{u}_{	au	au}$     | [-0.116, +0.406]             | $\left[-0.050, +0.065 ight]$ | $[-0.095, +0.125] \oplus [+0.302, +0.428]$ | $[-0.045, +0.141] \oplus [+0.290, +0.399]$ |  |  |  |  |  |
| $\varepsilon^{u}_{e\mu}$       | $\left[-0.059, +0.033 ight]$ | [-0.055, +0.027]             | [-0.060, +0.036]                           | [-0.060, +0.034]                           |  |  |  |  |  |
| $\varepsilon^{u}_{e	au}$       | [-0.250, +0.110]             | [-0.141, +0.090]             | [-0.243, +0.118]                           | [-0.222, +0.113]                           |  |  |  |  |  |
| $\varepsilon^{u}_{\mu	au}$     | [-0.012, +0.008]             | [-0.006, +0.006]             | [-0.013, +0.009]                           | [-0.012, +0.009]                           |  |  |  |  |  |
| $\varepsilon^d_{ee}$           | [-0.015, +0.566]             | [+0.036, +0.354]             | [-0.030, +0.468]                           | [-0.006, +0.434]                           |  |  |  |  |  |
| $\varepsilon^{d}_{\mu\mu}$     | [-0.104, +0.363]             | [-0.046, +0.057]             | $[-0.083, +0.077] \oplus [+0.278, +0.384]$ | $[-0.037, +0.099] \oplus [+0.267, +0.356]$ |  |  |  |  |  |
| $\varepsilon^{d}_{\tau\tau}$   | [-0.104, +0.363]             | [-0.046, +0.059]             | $[-0.083, +0.083] \oplus [+0.279, +0.383]$ | $[-0.038, +0.104] \oplus [+0.268, +0.354]$ |  |  |  |  |  |
| $\varepsilon^{d}_{e\mu}$       | [-0.058, +0.032]             | [-0.052, +0.024]             | $\left[-0.059, +0.034 ight]$               | [-0.058, +0.034]                           |  |  |  |  |  |
| $\varepsilon^{\dot{d}}_{e	au}$ | [-0.198, +0.103]             | [-0.106, +0.082]             | [-0.196, +0.107]                           | [-0.181, +0.101]                           |  |  |  |  |  |
| $\varepsilon^d_{\mu	au}$       | [-0.008, +0.008]             | [-0.005, +0.005]             | [-0.008, +0.008]                           | [-0.007, +0.008]                           |  |  |  |  |  |
| $\varepsilon_{ee}^p$           | [-0.035, +2.056]             | [+0.142, +1.239]             | [-0.095, +1.812]                           | [-0.024, +1.723]                           |  |  |  |  |  |
| $\varepsilon^p_{\mu\mu}$       | [-0.379, +1.402]             | [-0.166, +0.204]             | $[-0.312, +0.138] \oplus [+1.036, +1.456]$ | $[-0.166, +0.337] \oplus [+0.952, +1.374]$ |  |  |  |  |  |
| $\varepsilon_{\tau\tau}^p$     | [-0.379, +1.409]             | [-0.168, +0.257]             | $[-0.313, +0.478] \oplus [+1.038, +1.453]$ | $[-0.167, +0.582] \oplus [+0.950, +1.382]$ |  |  |  |  |  |
| $\varepsilon^p_{e\mu}$         | [-0.179, +0.112]             | [-0.174, +0.086]             | [-0.179, +0.120]                           | [-0.187, +0.131]                           |  |  |  |  |  |
| $\varepsilon^p_{e	au}$         | [-0.877, +0.340]             | [-0.503, +0.295]             | [-0.841, +0.355]                           | [-0.817, +0.386]                           |  |  |  |  |  |
| $\varepsilon^p_{\mu	au}$       | [-0.041, +0.025]             | [-0.020, +0.019]             | [-0.044, +0.026]                           | [-0.048, +0.030]                           |  |  |  |  |  |

**Table 2**.  $2\sigma$  allowed ranges for the NSI couplings  $\varepsilon_{\alpha\beta}^u$ ,  $\varepsilon_{\alpha\beta}^d$  and  $\varepsilon_{\alpha\beta}^p$  as obtained from the global analysis of oscillation plus COHERENT data. See text for details.

Coloma et.al., 1911.09109

#### NSI@electron collider



Nicrosini, Trentadue, PLB 231, 487 (1989)

### Constraints on NSI w/electron

Berezhiania, Rossi, Phys.Lett.B 535 (2002)

$$\begin{aligned} \sigma_{0}^{\text{NSI}}(s) &= \sum_{\alpha,\beta=e,\mu,\tau} \frac{G_{F}^{2}}{6\pi} s \left[ \left( (\epsilon_{\alpha\beta}^{eL})^{2} + (\epsilon_{\alpha\beta}^{eR})^{2} \right) - 2 \left( g_{L} \epsilon_{\alpha\beta}^{eL} + g_{R} \epsilon_{\alpha\beta}^{eR} \right) \frac{M_{Z}^{2} \left( s - M_{Z}^{2} \right)}{\left( s - M_{Z}^{2} \right)^{2} + \left( M_{Z} \Gamma_{Z} \right)^{2}} \right] \\ &+ \frac{G_{F}^{2}}{\pi} \epsilon_{ee}^{eL} M_{W}^{2} \left[ \frac{\left( s + M_{W}^{2} \right)^{2}}{s^{2}} \log \left( \frac{s + M_{W}^{2}}{M_{W}^{2}} \right) - \frac{M_{W}^{2}}{s} - \frac{3}{2} \right] . \qquad \alpha, \beta = e, \mu, \tau \end{aligned}$$

12 independent NSI parameters



- Introduction to NSI
- Current constraints on NSI
- NSI at Belle II, STCF, CEPC
- Summary

# Analysis

$$\chi^2(\epsilon^{eL}_{\alpha\beta}, \ \epsilon^{eR}_{\alpha\beta}) \equiv S^2(\epsilon^{eL}_{\alpha\beta}, \ \epsilon^{eR}_{\alpha\beta})/(B_{\rm ir} + B_{\rm re})$$

- *S* is the number of events in the signal;
- $B_{ir}$  : irreducible background with final state containing one  $\gamma$  and two  $\nu$  in the SM;
- $B_{re}$ : reducible background with final state containing one  $\gamma$  and other visible particles not detected due to limitations of the detector acceptance.





|                                 | 5101-2              | 5101-4              | 5101-7              | Delle II            | Flevious Linit          |
|---------------------------------|---------------------|---------------------|---------------------|---------------------|-------------------------|
|                                 | $L=30~{ m ab}^{-1}$ | $L=30~{ m ab}^{-1}$ | $L=30~{ m ab}^{-1}$ | $L=50~{ m ab}^{-1}$ | 90% Allowed [45]        |
| $\epsilon^{eL}_{ee}$            | [-0.067,0.061]      | [-0.033,0.031]      | [-0.018,0.018]      | [-0.0091,0.0089]    | [-0.03,0.08]            |
| $\epsilon^{eR}_{ee}$            | [-0.60,0.15]        | [-0.163,0.087]      | [-0.070,0.053]      | [-0.031,0.028]      | [0.004,0.15]            |
| $\epsilon^{eL}_{\mu\mu/	au	au}$ | [-0.13,0.69]        | [-0.073,0.101]      | [-0.044,0.052]      | [-0.023,0.025]      | [-0.03,0.03]/[-0.5,0.2] |
| $\epsilon^{eR}_{\mu\mu/	au	au}$ | [-0.60,0.15]        | [-0.163,0.087]      | [-0.070,0.053]      | [-0.031,0.028]      | [-0.03,0.03]/[-0.3,0.4] |



$$\sqrt{s} \ge M_Z \qquad \sigma^{\mathrm{NSI}}\left(\epsilon_{ee}^{eL}, \epsilon_{ee}^{eR}\right) = I_1\left(\left(\epsilon_{ee}^{eL}\right)^2 + \left(\epsilon_{ee}^{eR}\right)^2\right) + (I_2 + I_3)\epsilon_{ee}^{eL} + I_2\frac{g_R}{g_L}\epsilon_{ee}^{eR}$$
$$I_i \equiv \int dx \int dz_\gamma H(x_\gamma, z_\gamma, s) \left[\sigma_0^{\mathrm{NSI}}((s_\gamma)\right]_i \quad \text{is a function of } \sqrt{s}$$

Allowed regions lie between two concentric circles with the center:  $(\epsilon_{ee}^{eL}, \epsilon_{ee}^{eR})$ 

$$(\epsilon_{ee}^{eL}, \epsilon_{ee}^{eR}) = (-\frac{I_2 + I_3}{2I_1}, -\frac{I_2g_R}{2I_1g_L})$$



#### Summary

- Neutrino oscillation experiments are strongly affected by NSI, it is natural to seek complementary constraints on NSI from collider experiments.
- Both Belle II and STCF can provide competitive and complementary bounds on  $\varepsilon_{ee}^{eL,R}$  as compared to current global analysis, and strong improvements in the constraints on  $\varepsilon_{\tau\tau}^{eL,R}$ .
- CEPC running with three CM energies  $\sqrt{s} = 240, 160, 91.2$  GeV will break the degeneracy between the left- and right-handed NSI, and can reach a sub-percent level sensitivity for all electron NSI.

Thank you!

#### Backup slides

#### Coordinates of the centers

