

1958

Science and Techn

CALICE ScW-ECAL prototype development and commissioning

Yazhou Niu, University of Science and Technology of China

On behalf of the ScECAL group in CALICE and CEPC

Joint Workshop of CEPC 25/5, 2022

Future Higgs factory

- Future e^+e^- collider offer unique physics possibilities
 - Precise mode-independent Higgs coupling measurement
 - Precise measurements of W, Z and top quark properties
 - Direct and indirect search for BSM physics
- Proposed future Higgs factory projects
 - Linear collider : ILC, CLIC
 - Circular collider : CEPC, FCC
- The main physics program require for calorimeters
 - Jet energy resolution ~ $30\%/\sqrt{E}$

From CEPC CDR

Physics process	Measurands	Detector subsystem	Performance requirement	
$\begin{array}{l} ZH,Z \rightarrow e^+e^-, \mu^+\mu^- \\ H \rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$	
$H \to b \bar{b} / c \bar{c} / g g$	$BR(H \to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$	
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E = 3 \sim 4\%$ at 100 GeV	
$H \to \gamma \gamma$	$\mathrm{BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$	

Particle Flow Calorimetry

- Each individual particle in one jet is reconstructed and identified, measured with the most suitable subdetector
- High granularity calorimetry
 - Fine segmentation in both transverse and longitudinal
 - Energy resolution requirements not that stringent

Tracker HCA	HCAL	Particles	Energy fraction	Subdetector	Typical resolution
		Charged particles	~65%	Tracker	$< 5 \times 10^{-5} p_T$
	ane -	Photons	~25%	ECAL	$\sim 15\%/\sqrt{E}$
electron	muon	Neutral hadrons	~10%	ECAL+HCAL	$\sim 55\%/\sqrt{E}$
High granularity calorimeter		$\sigma_{Jet} = \sqrt{1}$	$\sigma_{Track}^2 + \sigma_{EM}^2$	$\sigma_{A}^{2} + \sigma_{Had}^{2} + \sigma_{C}^{2}$	onfusion

Technologies for highly granular calorimeter

• Mainly organized within the CALICE collaboration

Progress of ScECAL R&D

• Physical Prototype

2007 - 2013

- Proof-of-principle of scintillator & SiPM for granular calorimeters
- Beam tests for ScW-ECAL

Technological Prototype

2013 - ... Ongoing

- Engineering challenges
- Embedded front-end readout
- Higher granularity
- Temperature compensation, gain calibration, ...

ScECAL technological prototype

- ScECAL technological prototype consisting of ~ 6,700 channels
 - Scintillator strips readout with SiPMs as sensitive cell
 - Embedded front-end readout electronics integrated with detector
 - 32 active layer (Ecal Base Unit), $22 \times 22 \text{ cm}^2$, $\sim 22 X_0$
 - Two EBU layers perpendicular and inserted by two absorber layers
 - Voltage supply, LED calibration system, temperature monitor, ...
 - Scalable to full detector (the expected $10^7 \sim 10^8$ channels)

Construct of ScECAL technological prototype

- Large ScECAL technological prototype was constructed within the CALICE framework and CEPC calorimeter group
 - ~ 80 \times 43 \times 54 cm³ in dimensions and over 200 kg in weight

Calibration and energy reconstructed

2000

0.2

0.4

0.6 0.8

- $c_i^{inter}(T)$: ASIC gain calibration
- $c_i^{MIP}(T)$: MIP response calibration

1.6

1.8

1.2 1.4

1 Deposition Engyer in Cell [MeV]

Calibration

- Pedestal calibration
 - Subtracted for each channel

Calibration

Cosmic Ray test

- Long-term cosmic ray test ~ 3 months
 - Coincidence trigger of Layer 1 & Layer 29
 - 1.4 million effective cosmic ray events collected
- Two methods are performed to reconstruct the track of cosmic-ray events

- Per-selections to eliminated the noise events
- w/o SSA: only use the 5 mm width direction of $45mm \times 5mm$ strip in one layer
- w/ SSA: split the $45mm \times 5mm$ strip into $5mm \times 5mm$ cells firstly
- Fit the cosmic-ray track and select events with good track

Performance evaluation

Performance evaluation

• Sum of cosmic-ray events deposition energy in sensitive layer

- The reason for MIP decline is under investigation
- Temperature dependence and MIP decline corrected
 - The data shows good agreement with simulation

Reconstruction of cosmic-ray shower

- Performance of ScECAL prototype for electromagnetic shower is evaluated using the cosmic-ray events
 - Instead of test beam experiment (due to the COVID around the world)
- Cosmic-ray shower events is searched for:
 - Calibration : ADC counts converts to # of MIPs
 - Strip Splitting Algorithm & clustering
 - Shower search
 - Many hits in three consecutive layers

Performance of cosmic-ray shower

- Comparison using the events with fully contained shower
 - The sum of hits at the last layer is less than 4
- Data and simulation matches reasonably well
 - Simulation reproduces the behavior of the prototype very well for the fully contained cosmic-ray shower events

Summary

- A large ScECAL technological prototype constructed
 - Fully integrated front-end readout electronics and detector layer
- Performance evaluation
 - Sufficient detection efficiency and position resolution
 - Sum of deposition energy is reconstructed and agree with the simulation
 - Cosmic-ray shower events can be detected as expected at the simulation
- ScW-ECAL is found to be a promising and mature technology for highly granular calorimeter for future Higgs factories
- Prepare the new beam test at CERN SPS in Oct. 2022 within the CALICE collaboration

Additional

Stability of the ScECAL prototype

- The ScECAL prototype system can be operated stably
 - Pedestal of all channels are stable during 3 month cosmic-ray test
 - Temperature monitor and variation can be corrected
 - SiPM gain of all channels are stable during 1 month LED run

Beam test

- IHEP E3 beam test in Oct. 2020
 - Mixed with protons/pions: protons dominate
 - Momentum : 0.3 *GeV* ~ 1.2 *GeV*
 - Event rate: less than 100 per minute
 - Limited by the poor beam quality
 - The ScECAL prototype is ready for further beam tests
- DESY T24 in 2020: postponed due to the pandemic
- Prepare the new beam test at CERN SPS in Oct. 2022 within the CALICE collaboration

