CEPC vertex detector R & D global overview

Zhijun Liang (IHEP)

Institute of High Energy Physics Chinese Academy of Sciences

Physics goal for vertex detector

- Higgs precision measurement
- $H \rightarrow bb$ precise vertex reconstruction
- $H \rightarrow \mu \mu$ (precise momentum measurement)

Need tracking detector with high spatial resolution, low material

Vertex detector and beam pipe

- The radius of vertex detector should be as small, closer to interaction point
- From CDR to today: beam pipe radius reduced from 16mm to 10mm

Requirement on vertex detector

- Small inner radius (小半径, 贴近束流管)
- Low material budget <0.15% X0 per layer
- High resolution pixel sensor: $<3\mu m$
- Other requirement
 - Temperature (温度) <= 20 C
 - Temperature gradient两端温度梯度 < 10 C
 - Vibration 振动< 1µm

C-tagging performance

MDI interface for SID and SLD detector

- Liquid nitrogen cooling design for cooling was used in SLAC SLD detector
- ILC SID is using this design

SID vertex detector

SLAC SLD vertex detector in MDI

BELLE II pixel detector

- Gas cooling used in BELLE II pixel sensor
 - Small vibration (<1um) with gas flow
- Micro-channel cooling for readout ASIC

Overview of CEPC vertex detector R & D

- Can break down into sub-tasks:
 - CMOS imaging sensor chip R & D (will be covered by Ying's talk)

 - Detector assembly
 - Data acquisition system R & D

• Detector layout optimization, Ladder and vertex detector support structure R & D

Full size vertex detector Prototype

Beam test to verify its spatial resolution

Detector module (ladder) R & D

- Sensors will be glued and wire bonded to the flexible PCB
- Flexible PCB will be supported by carbon fiber support structure
- Signal, clock, control, power, ground will be handled by control board through flexible PCB

Detector module (ladder)= 10 sensors + support structure+ flexible PCB+ control board

Detector module (ladder) R & D

- Completed preliminary version of detector module (ladder) design
 - Detector module (ladder)= 10 sensors + support structure+ flexible PCB+ control board
 - Sensors will be glued and wire bonded to the flexible PCB
 - Flexible PCB will be supported by carbon fiber support structure
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB

3D model of the ladder

Design of Flexible PCB prototype

- Double side flex + rigid PCB for 10 chips(15.31 X 25.6mm)
 - 17.31mm X 257mm for flex part.
- Copper thickness: 0.5oz (18um)
- Signal width: 3mil/3mil, power supply width:20~60mil

Profile of flexible PCB

	Achieved	Op
	Thickness (µm)	gc
Polyimide	25	
Adhesive	28	
Plating Cu	17.8	
kapton	50	
Plating Cu	17.8	
Adhesive	28	
Polyimide	25	

15

Carbon fiber Support structure of the ladder • Fabricated first support structure prototype of the ladder (IHEP designed)

- 4 layer of carbon fiber, 0.12mm thick
- ~3 time thinner than conventional carbon fiber

7 8 9 20 1 2 3

4

5

Gantry for vertex detector prototype assembly 3~5um good position resolution require high assembly precision Cooperate with domestic company on R & D Gantry automatic module assembly. Pattern recognition with high resolution camera

- •
- Automatic chip pick-up and positioning •
- Automatic Glue dispending •

Gantry system

automatic glue dispending **Pattern recognition** 〒 昭 昭 🥴 🭳 🔍 📜 28% ▼ 未处理同僚: K N

Tooling Design for Barrels Assembling

- 3 sets of tooling for 3 layer of barrel assembling.
- Tooling and special tool for inner and middle barrels assembling.

bling. lle barrels assembling.

Plan for test beam

- Expect to perform beam test in DESY in Dec 2022 (3 7GeV electron beams) ullet
 - IHEP test beam facility as backup plan (a few hundreds MeV 2.5GeV electrons)
- Enclosure for detector with air cooling is developed for beam test
 - Beam is shooting at one sectors of vertex detectors

Install one sector of ladder in vertex detector

Cooling design

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Jadepix/ Taichupix : ~ 100 mW/cm²
 - CEPC final goal : $\leq 50 \text{ mW/cm}^2$ •
- Cooling simulations of a single complete ladder
 - Testbench setup has been designed and built for air cooling , vibration tests

The EMMI (Emission Microscope) **For Taichupix2**

Air Cooling test

- Test bench setup for air-cooling
- **Vibration follows Gaussian distribution**
 - Maximum displacement can above 10µm ullet
 - **Core of Gaussian is still under control** \bullet

-0.022

Test setup prototype for ladder cooling Use compressed air for cooling (See more from Jinyu's talk)

Displacement

Air Cooling test

- **Test bench setup for air-cooling**
- **Vibration follows Gaussian distribution**
 - **Maximum displacement can above 10µm** ullet
 - **Core of Gaussian is still under control** ullet

Test setup prototype for ladder cooling Use compressed air for cooling (See more from Jinyu's talk)

Typical Vibration displacement during air cooling

Cooling design

- Air cooling is baseline design for CEPC vertex detector
- Sensor Power dissipation:
 - Taichupix : $\leq 100 \text{ mW/cm}^2$. (trigger mode)
 - CEPC final goal : $\leq 50 \text{ mW/cm}^2$
- Cooling simulations of a single complete ladder with detailed FPC were done. • Need 2 m/s air flow to cool down the ladder to 30 °C
- - Testbench setup has been designed for air cooling , vibration ...

N	Max temperature of ladder ($^{\circ}$ C) (air temperatur					
Ai Power Dissipation (mW/cm2)	r speed (m/s)	5	4	3		
100		19.6	21.8	25.0	30	
150		26.9	30.1	35	43	
200		34.2	38.6	45.1	56	

Test setup for ladder cooling Use compressed air for cooling

New technology

- Bent silicon detector \rightarrow self-support structure
- \rightarrow Ultra-low material budget
- Bent silicon has better contact with beam pipe
 - Can solve the inner layer cooling issue
- More will be discussed by Magnus's talk on Tuesday

From Magnus Mager, **IAS 2022 conference**

Summary

- Requirement of CEPC vertex detector discussed
- General design for vertex detector presented
- **General Requirement:**
 - Small inner radius: ~10mm
 - Low material budget : <0.15% X0 per layer
 - High resolution pixel sensor : <3µm
 - Temperature <= 20 C
 - Temperature gradient < 10 C
 - Vibration $< 1 \mu m$
 - More details in readout and timing requirement will be presented in Ying's talk

