Bent CMOS sensor R&D for next-generation vertex detector ALICE ITS3

Magnus Mager (CERN) on behalf of the ALICE collaboration Joint Workshop of the CEPC Physics, Software and New Detector Concept

Magnus Mager (CERN), CEPC, 24.05.2022

Overview

ALICE ITS3

motivation, requirements, layout link to C3 Vertex Detector

bending MAPS

- mechanics, test beams

Sensor development in TPSCo 65nm CIS - results from prototypes, plans

Magnus Mager (CERN) | bent MAPS ITS3 | CEPC | 24.05.2022 | 2

FRN

Study of QGP in heavy-ion collisions at LHC

- i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
 - requires precise inner tracker
- Interest in low momentum (≤1 GeV/c) particle reconstruction
 - requires low material budgets
- Moderate radiation environment $(<10^{14} 1 MeV n_{eq}/cm^2 NIEL)$

ALICE LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)

Inner Tracking System

7 layers: all MAPS 10 m², 24k chips, 12.5 Giga-Pixels

Inner-most layer:

radial distance: 23 mm material: $X/X_0 = 0.35\%$ pitch: $29 \times 27 \ \mu m^2$ rate capability: 100 kHz (Pb-Pb)

Muon Forward Tracker

new detector

5 discs, double sided: based on same technology as ITS2

ALICE LS2 upgraf

I-LHCC-2012-013 September 12, 2012 ALICE

~ 10 years of R&D and C&I

Upgrade of the Inner Tracking Sy Conceptual

Pixel

PIXEL PERFECT

A CERN for climate change dical technologies

LHC pilot beam results September 2021, 900 GeV proton collisions

Process: Tower Semiconductor 180 nm CIS

- deep p-well to allow CMOS circuitry inside matrix
- reverse-substrate bias

ALPIDE Pixel functionality

Front-end:

- (9 transistors, full-custom)
- continuously active
- shaping time: $< 10 \ \mu s$
- power consumption: 40 nW
- Multiple-event memory: 3 stages (62 transistors, full-custom)
- Configuration: pulsing & masking registers (31 transistors, full-custom)
- Testing: analogue and digital test pulse circuitry (17 transistors, full-custom)
- Readout: priority encoder, asynchronous, hit-driven

O(200) transistors / pixel (wrt. 3T/4T)

ALPIDE **Global architecture**

MAPS are highly integrated devices: reducing material budget + integration complexity

- next active circuit $\gtrsim 8$ m away off-detector

Strobing:

- global shutter
- either triggered or in continuous sequence

Parallel Data Port (4×80 Mbps)

Serial Out Port (1200 Mbps / 400 Mbps)

Data interface:

high-speed serial link using copper cables

Process modification Fully depleted MAPS – ITS2 "side project"

Foundry standard process

Partially depleted epitaxial layer Charge collection time < 30 ns **Operational up to 10^{14} 1 MeV n_{eq}/cm^2**

Excellent co-operation with foundry!

Now being further pursued with MALTA, CLICpix, FastPix, ...

Modified process CERN/Tower

Fully depleted epitaxial layer Charge collection time < 1 ns **Operational up to 10^{15} 1 MeV n_{eq}/cm^2**

> More details: NIM **A871** (2017) 90-96 https://doi.org/10.1016/j.nima.2017.07.046

_	l
vell	l
	l
	l
	ł
	Į
	ł
	l
	ł
	ł
	ł
	I
,	l
	l
	ł
	I
	l
	ł
	l
	ł
	l
	ł
	l
	ł
	l
	l
	I
	1

ITS2 inner barrel

- ITS2 is expected to perform according to specifications or even better
- ► The Inner Barrel is ultra-light but rather packed → further improvements seem possible

ITS2: assembled three inner-most half-layers

Key questions: Can we get closer to the IP? Can we reduce the material further?

$\mathsf{ITS2} \to \mathsf{ITS3}$ idea

By employing wafer-scale, bent sensors it can be improved on:

- material budget (~ factor 7)
- distance to interaction point (no "turbo" geometry)

The idea is simple, but requires quite some R&D — which we started in Dec 2019!

ITS3 Letter of Intent [CERN-LHCC-2019-018 ; LHCC-I-034]

ITS3 detector concept

Beam pipe Inner/Outer Radius (mm)	16.0/16.5		
IB Layer Parameters	Layer 0	Layer 1	Lay
Radial position (mm)	18.0	24.0	30.
Length (sensitive area) (mm)	300		
Pseudo-rapidity coverage	±2.5	±2.3	±2.0
Active area (cm ²)	610	816	101
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280
Number of sensors per layer		2	
Pixel size (µm²)		O (10 x 10)	

Key ingredients:

- 300 mm wafer-scale sensors, fabricated using stitching
- thinned down to 20-40 µm (0.02-0.04% X₀), making them flexible
- bent to the target radii
- mechanically held in place by carbon foam ribs

Key benefits:

- extremely low material budget: 0.02-0.04% X₀
 - (beampipe: 500 µm Be: 0.14% X₀)
- homogeneous material distribution: negligible systematic error from material distribution

The whole detector will consist of six (!) sensors (current ITS IB: 432) – and barely anything else

ITS3 performance figures

pointing resolution

[ALICE-PUBLIC-2018-013]

improvement of factor 2 over all momenta

tracking efficiency

large improvement for low transverse momenta

Bending MAPS

Flexibility of silicon

- Monolithic Active Pixel Sensors are quite flexible
 - already at thicknesses that are used for current detectors
- Bending force scales as (thickness)-3
 - large benefit from thinner sensors
- Breakage at smaller radii for thinner chips
 - again benefit from thinner sensors
- Our target values are very feasible!

Magnus Mager (CERN) | bent MAPS ITS3 | CEPC | 24.05.2022 | 15

Magnus Mager (CERN) | bent MAPS ITS3 | CEPC | 24.05.2022 | 16

Flexibi

- Monolith
 - already
- Bending
 - large burner rom and some of the
- Breakage at smaller radii for thinner chips
 - again benefit from thinner sensors
- Our target values are very feasible!

Magnus Mager (CERN) | bent MAPS ITS3 | CEPC | 24.05.2022 | 17

Flexibility of silicon

- Monolithic Active Pixel Sensors are quite flexible
- Bending force scales as (thickness)-3 large benefit from thinner sensors
- Breakage at smaller radii for thinner chips again benefit from thinner sensors
- Our target values are very feasible!

Bending of wafer-scale sensors procedure

30 mm (L2) 50 μm dummy Silicon

Layer assembly

3-layer integration successful!

R&D on air cooling

- A set of bread board models based on heating elements are being developed
- Placed in a custom wind tunnel, thermal and mechanical properties are studied

$DT = T_{periphery} - T_{air_{in}}$ LO EXF Periphery Ø11111 Ø1111 Ø1111 Ø $\mathbf{2}$ 6 4v (m/s)

Bent ALPIDEs

A number of prototypes with bent ALPIDEs were produced

- several different ways were explored (bending before bonding, or vice versa, different jigs)
- "feeling" for handling thin silicon was gained
- By now, we have a full mock-up of the final ITS3, called "µITS3"
 - 6 ALPIDE chips, bent to the target radii of ITS3

Beam tests 1st paper <u>doi:10.1016/j.nima.2021.166280</u>

Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale $(10^{-1} \text{ to } 10^{-5})$ to show fully efficient rows. Each data point corresponds to at least 8k tracks.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Available online 10 January 2022, 166280 In Press, Journal Pre-proof (?)

First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors

ALICE ITS project 1

Show more 🗸

😪 Share 🌖 Cite

https://doi.org/10.1016/j.nima.2021.166280

Get rights and content

Clearly proving that bent MAPS are working!

TPSCo 65 nm CIS

TPSCo 65 nm CIS reasons for migration from TJ 180 nm CIS

- ALICE by now long standing experience with Tower Semiconductor (aka "TowerJazz"), using their 180 nm CIS process
 - we produced and tested >70k sensors for ITS2
 - we optimised the process together with the foundry to reach full depletion (not used for ITS3, but then followed up later by several groups)
- The 65 nm CIS of Tower Partners Semiconductor (TPSCo) offers:
 - larger wafers: 300 mm instead of 200 mm, single "chip" is enough to equip an ITS3 half-layer
 - smaller structure sizes: potentially
 - lowering power consumption
 - increasing spatial resolutions
 - increasing in-pixel circuitry
 - increasing yield

First submission in TPSCo 65 nm CIS

~12 mm

16 mm

- Submission together with CERN EP R&D WP 1.2
 - contains many test chips (transistor test structures, DACs, analog pixel matrices, digital pixel matrices, ...)
- Fully processed wafers available since summer 2021
- Chips are now thinning/diced/picked in large quantities
- Tests are ongoing at several institutes and groups

Analog Pixel Test Structure (APTS) overview

- The analog pixel test structure (APTS)
 - 6x6 pixels (central 4x4 read out)
 - different pitches: 10, 15, 20, 25 μm
 - different implant geometries
 - different output drivers
- Allows for very detailed mapping of parameters space
 - important e.g. in view of larger pixels
 - also key to verify and tune simulation models

s n

APTS lab results process optimisation: charge collection/sharing

- Already in the first run in 65 nm process modifications were done together with the foundry
 - excellent collaboration with the foundry
 - this took several years in the 180 nm
- This allows to engineer/tune the charge charing and collection times to some extent
- A detailed study will allow to choose the best trade-off for the vertex detector, outer tracker

Digital Pixel Test Strucutre (DPTS) overview

- The digital pixel test structure (DPTS) - 32x32 15 µm pitch pixels
- Includes full digital front-end and readout
- Studied now in detail, shows excellent performance parameters (preliminary):
 - Efficiency: >99%
 - Time resolution: O(10ns)
 - Radiation hardness: OK for ALICE
 - Spatial resolution: $O(3-4 \mu m)$
- Silicon-proven building block for larger chips!

DPTS test beam results detection efficiency

- 100% detection efficiency at first shot

Towards the final sensor next submission "ER1"

- Floor plan compatible with stitching worked out in close collaboration with foundry
- Mock submission happened Dec 2021
 - crucial step to verify stitching constraints
- Designs (ITS3 + CERN EP R&D WP1.2) include:
 - the large ITS3 stitching demonstrator ("MOSS")
 - an alternative stitching architecture ("MOST")
 - several small chips with building blocks and pixel and radiation test structures
- Designs are converging:
 - plan to **submit before summer 2022**
- Preparations for post-processing and testing ongoing

ER1 **MOSS: ITS3 stitching demonstrator**

- Fully functional sensor (with diodes, front-end, readout)
 - taking advantage of Si-proven parts from MLR1
 - but not integrating all building blocks and functionality of final sensor, yet -
- Different densities (pitches) to study impact onto yield
- Several testing options to study voltage drops and possible defects

Outlook ALICE 3

- ALICE proposes to build a completely new detector in LHC LS4 (2033-34)
- It will heavily rely on silicon detectors
- Central part: a 60 m² MAPS tracker
 - with in-beampipe vertex layers

Letter of Intent very positively evaluated by LHCC \rightarrow R&D programme ramping up!

Summary

- ALICE has a history in developing MAPS and will continue to do so:
 - ITS2 (10 m², 12.5 GPixel) is installed and taking data
 - R&D for **ITS3** is ongoing and well on track
 - ALICE 3 will scale the effort up by another order of magnitude
- Requirements for a Lepton Collider are very similar to those for ALICE ITS3 - ITS3 can be seen as the demonstrator/prototype/concept detector for
 - lepton facilities
 - even better: ITS3 will be a real full-scale detector facing and addressing integration issues
- Very exciting times for MAPS are ahead of us!

