

Muon detector development

Hongyu Zhang

(Xiaolong Wang, Xiyang Wang, Liang Xing, Xu Dong)

Fudan University

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022

May 25, 2022

01 CEPCSW and Geant4 simulation

- **02** Performance of current KLM design
- **03** Using new NDL SiPM and fast amplifier

Implement of muon detector in CEPCSW

Scintillator + SiPM readout

- Set up
 - Geometry
 - Scintillator parameters
 - WLS fiber
- Simulation
 - Detector efficiency for muon
 - Behavior of long-lived particle
 - Tail of hadron cluster from HCAL
 - Spatial resolution
 - Time resolution

Structure of current KLM design

- Scintillator shape is flexible, easy to get good spatial resolution:
 - $\sigma = Width/\sqrt{12}$
- Wave length shift (WLS) fiber inside scintillator to collect photons and guide them to SiPM.
- Use SiPM at one or both ends, small size, low cost and can work at high magnetic field.

Figure 4: Muon identification efficiency after the requirement muonID > 0.9 in the three considered scenarios for tracks with 0.8 (on the left) and for tracks with <math>1.5 (on the right).

Set up of scintillation detector

Scintillators with different size

Reflective layer

S13 series SiPM from Hamamatsu

WLS fibers

Coupling between SiPM and fiber

Optical glue, silicone oil

Differential preamplifier

\succ Reflective layer improves efficiency a lot.

- With reflective layer
- Without reflective layer

Two kinds of WLS fiber

Wavelength-shifting fibers

Saint-Gobain WLS Fiber 1.0mm Dia.

Blue to Green Shifter (Kuraray)

• File

• 1000 grit sandpaper

• 2000 grit sandpaper

KURARAY WLS Fiber Y-11(200)MSJ 1.2mm Dia.

• 1500 grit sandpaper

Comparison of two WLS fibers

Choosing better fiber

Coupling between SiPM and fiber

Coupling of WLS fiber and MPPC

Easily and strongly connected

Scintillation detector

Coupling between MPPC & fiber

No.	Coupling	N3	N2	efficiency	error	ADC Mean * Entries
1	directly taped	237	243	97.53%	1.00%	12.8M
2	phenolic resin	225	236	95.34%	1.37%	21.5M
3	white new design (3D printing)	209	210	99.52%	0.48%	27.3M
4	black new design (CNC)	212	217	97.70%	1.02%	31.7M
Best choice						

Performance of current Belle II KLM design

- CR testing with two stripsHigh efficiency
- \geq Time resolution: < 1.5*ns*

Keeping high efficiency at 10 p.e. threshold

Using new NDL SiPM

Specifications

Туре	EQR10 11-1010C-S	EQR10 11-3030D-S	
Effective Pitch	10 μm		
Element Number	1×1	1×1	
Active Area	1.0×1.0 mm ²	3.0×3.0 mm ²	
Micro-cell Number	10000	90000	
Breakdown Voltage (V _B)	$26.4\pm0.4~\mathrm{V}$	$28.5\pm0.5~\mathrm{V}$	
Temperature Coefficient for V_B	21 mV / °C	19 mV / °C	
Recommended Operation Voltage	$V_B + 6 V$	V _B +12 V	
Peak PDE @420nm	32 %	36 %	
Gain	2.0×10^5	$1.7 imes 10^5$	
Dark Count Rate (DCR)	500 kHz / mm ²	400 kHz / mm ²	
Terminal Capacitance	7 pF	31 pF	

Above parameters are measured at their recommended operation voltage and 20 °C.

The EQR10 11-1010C-S can operate at 77 K.

Characteristics

The single photoelectron pulse (amplified by a 40dB fast amplifier).

The PDE versus overvoltage and wavelength, deducted crosstalk and afterpulse and measured at 20 $^{\circ}\mathrm{C}$.

Single p.e. : 37.5mV

Threshold>6p.e. DCR<10 Hz

Threshold>7p.e. DCR<1 Hz

Dark Count Rate

NDL-EQR15 At optical voltage

Dark Count Rate and optical crosstalk

At optical voltage,

- \succ the larger the pixel spacing (the fewer the number of pixels), the lower the DCR;
- \succ the larger the sensitive area, the higher the DCR and OCT.

Test of new NDL SiPM

Gain

- Independent, equally spaced peaks.
- \succ The higher the HV, the larger the gain.

New design on the FE and NDL SiPM

Rising time: ~3.5 ns!

The preams are tuned at FDU for different kinds of SiPMs.

Efficiency of new design

The efficiency is high enough. Still needs improvement on coupling, light collection, etc.

Time resolution: SiPM with 6mm×6mm

Keep laser constant

50	HV/ V	Pedestal	ADC	σ of time difference	
40 30	28	1.2	140, 90	65	
20	30	2.9	400,270	46	
)	Time resolution = $\sigma/\sqrt{2}$				

New design for good timing

Scintillator+4SiPMs+new pream

Two strips: 4*cm*×1*cm*×10*cm*

ADC1:ADC2

(146.2±2.0) ps

(127.8±3.0) ps

Summary

- Detector simulation is ongoing, and will be implemented into CEPCSW.
- Good performance of the current KLM design for efficiency.
- Good performance of new NDL SiPM for gain, DCR, and efficiency.
- Fast preamplifier is designed for much better time resolution.
- Time resolution of about 130 ps has been obtained with short strips.

Thank you!

For reference

<u>Scinti + SiPM</u>

- MUTHUSLA experiment
 - Large size detector based on scintillator to search for long-live particle
 - Institutions: SLAC, Fermilab...
- Belle II experiment: $L = 10^{36} \text{ cm}^{-2}\text{s}^{-1}$
 - Belle II started physics running on 11/3/2019
 - Endcap and inner 2 barrel layers: RPC
 → Scintillator
 - Good performance achieved
 - Belle II is considering the upgrade: all the barrel RPC → scintillator; new readout system
 - Institutions: Fudan U., U of Hawaii, Virginia Tech, ...
- Helpful for R&D, testing, production, price...
- SiPM is becoming popular

CEPC CDR 2018

Parameter	Baseline		
$L_b/2$ [m]	4.14		
<i>R_{in}</i> [m]	4.40		
R _{out} [m]	6.08		
L_e [m]	1.72		
<i>R_e</i> [m]	0.50		
Segmentation in ϕ	12		
Number of layers	8		
Total thickness of iron ($\lambda = 16.77$ cm)	6.7λ (112 cm) (8/8/12/12/16/16/20/20) cm		
Solid angle coverage	$0.98 \times 4\pi$		
Position resolution [cm]	$\sigma_{r\phi}$: 2 σ_z : 1.5		
Time resolution [ns]	1 – 2		
Detection efficiency $(P_{\mu} > 5 \text{ GeV})$	> 95%		
Fake $(\pi \rightarrow \mu)@30$ GeV	< 1%		
Rate capability [Hz/cm ²]	~60		
Technology	RPC (super module, 1 layer readout, 2 layers of RPC)		
Total area [m ²]	Barrel: ~4450 Endcap: ~4150 Total: ~8600		

40 GeV μ^{\pm} hits

- > Fast testing with 40 GeV μ^{\pm} is performed.
- ➤ WLS fibre and SiPMs are not included yet.
- ➤ Plan:
 - A complete description of the scintillator-based muon detector.
 - ◆ Implementation into the CEPCSW.
 - ◆ Optimization according to CEPC physics goals.

Need new scintillator

- \succ Longer attenuation length.
- ➢ Reasonable cost.
- Considering efficiency without fiber and reflective layer.
- > New design for fast pream!

New scintillator from Gaonengkedi Company.

How about new NDL SiPM (Made in China)

Specifications

Characteristics

Above parameters are measured at their recommended operation voltage and 20 °C.

Looks good.

The EQR10 11-1010C-S can operate at 77 K.

The single photoelectron pulse (amplified by a 40dB fast amplifier).

The PDE versus overvoltage and wavelength, deducted crosstalk and afterpulse and measured at 20 $^{
m oC}$.

NDL性能测试——增益测量

$$Gain = \frac{Q}{e} = \frac{\left(V_{op} - V_{br}\right)C_{pixel}}{e}$$

$$Gain = \frac{\Delta pp(AHC_{ch}) \times ADC_{c.r.}}{e}$$

$$\Delta pp(AHC_{ch}) = V_{op} \frac{C_{pixel}}{ADC_{c.r.}} - V_{br} \frac{C_{pixel}}{ADC_{c.r.}}$$

Δpp(AHC_{ch})为输出电荷积分频谱中峰与
 峰之间的道数差; e为电子电量;
 ADC_{c.r.}为ADC转换系数; n p.e. (photon equivalent)为由n个光子所引发的脉冲

Design of fast preamplifier

Resistor sampling and negative feedback amplifier circuit

Rise time : 1-2ns HWHM : 3-4ns

Rise time : 2-4ns HWHM : 6-8ns

Rise time : 5-10ns HWHM : 40-60ns

Testing with two long Santi-Gobain scintillators

Two long strips from IHEP with excellent time resolution: $3cm \times 5cm \times 1m$

Two MCP-PMT

Trigger strips at near end: $4cm \times 1cm \times 10cm$

-2000

-1500

-1000

-500

0

500

1000

1500

Time Difference (ps)

Δ T = -377.93 ± 4.9

 σ = 184.3 ± 4.3

300 Voltage (mV) ᡊᡏᡗᡗᠯᠴ 250 200 -20 150 -30 100 _400 50 -500 600 620 640 660 Time (160ps/div)

Santi-Gobain scintillators and SiPMs

A combination of 4 pieces of $6mm \times 6mm$ SiPMs as the photon sensor.

ADC1:ADC2

Almost a same performance as MCP-PMT for timing!!!

ADC>30

top to bottom : 1, 2, 3, 4

T2 and T3 with distance of $\sim 4cm$

T1 and T4 with distance of $\sim 10 cm$

Time resolution

 $\Delta T = 97.9 \pm 6.9$

 $\sigma = 281.7 \pm 6.4$

T1-T3

Time Difference (ps

- Time resolution: T2,T3: 132.0 ± 3.3*ps* T1,T2: 127.2 ± 2.7*ps* T3,T4: 119.5 ± 2.0*ps* T1,T3: 199.2 ± 4.5*ps* T2,T4: 169.3 ± 3.6*ps* T1,T4: 222.1 ± 4.4*ps*
- Increase of time resolution is due to the velocity of CR.
 Velocity of CR should be taken into account.

∆ T = -354.50 ± 7.0

T1-T4

Time Difference (ps)

 $\sigma = 314.1 \pm 6.2$

 Δ T = -636.62 \pm 5.6

 $\sigma = 239.4 \pm 5.1$

T2-T4

Time Difference (ps)

31

How about implementing timing?

- Two options of scintillator detector:
 - A. Cheap scintillator+WLS fibre+small SiPM, low cost for large size
 - B. Excellent scintillator+large SiPMs, reasonable cost with good timing
- We can combine them for LLP search, to extend the study area of CEPC
 - One sector far away from IP,
 - Measure the tracks with good spatial resolution,
 - Measure the TOF of tracks (and charge?) for velocity (and dEdx?).
 - The distance between layers can be tuned.

decav

Fig. 1: Simplified detector layout showing the position of the $200 \text{ m} \times 200 \text{ m} \times 20 \text{ m}$ LLP decay volume used for physics studies. The tracking planes in the roof detect charged particles, allowing for the reconstruction of displaced vertices in the air-filled decay volume. The scintillator surrounding the volume provides vetoing capability against charged particles entering the detector.