Probing Relatively Heavier Selectron at the CEPC, FCC_{ee} , and ILC

Shabbar Raza

Department Physics, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.

> in collaboration with and Waqas Ahmed, Imtiaz Khan, Tianjun Li and Wenxing Zhang.

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022.

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

- The Standard Model
- Low Energy Supersymmetry
- SUSY@CEPC
- Scan Results for Light Bino
- Collider Analysis: Probing Relatively Heavy Right-Handed Selectron
- Summary

Discovery of the Higgs Boson

- It is 10th celebration of discovery of the Higgs Boson
- It completes the particle content of the Standard Model (SM)
- Is the party over? No, not yet.

The Standard Model (SM)

- The SM is a highly successful theory and has been tested rigorously.
- The SM is based on the gauge symmetry groups of strong nuclear force, weak nuclear force and electromagnetic force i.e SU(3)_c × SU(2)_L × U(1)_Y
- $SU(3)_c \longrightarrow \text{QCD part}$
- $SU(2)_L \times U(1)_Y \longrightarrow$ Electroweak part

- In the SM neutrinos are massless
- No dark matter (non-baryonic) candidate
- Gauge hierarchy problem $(\delta m_h^2 \propto \Lambda^2)$
- Electric charge is not fully quantized
- Non-unification of gauge couplings

Low Scale (\sim TeV) Supersymmetry (SUSY):

- Arguably the most compelling extension of the Standard Model;
- Relates fermions to bosons and vice versa;
- Resolves the gauge hierarchy problem ;
- Provides cold dark matter candidate (LSP);
- Predicts new particles accessible at the LHC, and thereby enables unification of the SM gauge couplings;

16

The Minimal Supersymmetric Standard Model (MSSM)

	Chiral Superfields	spin 0	spin $\frac{1}{2}$	$(SU(3), SU(2), U_Y(1))$
squarks and quarks	Q	$(\tilde{u}_L \tilde{d}_L)$	$(u_L d_L)$	$(3, 2, \frac{1}{6})$
	U^{c}	\tilde{u}^c	u^c	$(\bar{3}, 1, -\frac{2}{3})$
	D^c	\tilde{d}^c	d^c	$(\bar{3},1,\frac{1}{3})$
sleptons and leptons	L	$(\tilde{\nu} \tilde{e}_L)$	(νe_L)	$(1, 2, -\frac{1}{2})$
	E^c	\tilde{e}^c	e^{c}	(1, 1, 1)
Higgs and higgsinos	H_u	$(H^+_uH^0_u)$	$(\tilde{H}_u^+\tilde{H}_u^0)$	$(1, 2, \frac{1}{2})$
	H_d	$(H^0_dH^d)$	$(\tilde{H}^0_d\tilde{H}^d)$	$(1, 2, -\frac{1}{2})$

	Vector Superfields	spin $\frac{1}{2}$	spin 1	$(SU(3),SU(2),U_Y(1))$
gluinos and gluons	G	\tilde{g}	g	(8, 1, 0)
winos and W -bosons	W	$\widetilde{W}^{\pm}, \widetilde{W}^{0}$	W^{\pm}, W^0	(1, 3, 0)
bino and B -boson	В	\tilde{B}	В	(1, 1, 0)

- *h*, *H*, *A*, *H*[±]
- $R = (-1)^{3(B-L)+2S}$, R=1 (particles), R=-1 (sparticles)
- $\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}^0 + N_{13}\tilde{H}_u^0 + N_{14}\tilde{H}_d^0$, Neutralino LSP. This is prime DM candidate.

• SUSY is a broken symmetry $(m_e \neq m_{\tilde{e}})$

- We have to break SUSY by introducing soft supersymmetry breaking terms (SSB)
- MSSM+SSB more than 100 parameters
- We have to relate these parameters, for example, CMSSM,NUHM2 etc.(High scale) and pMSSM(Low scale).

Where is SUSY?

- After Run-1 and Run-2 LHC SUSY searches show no evidence of SUSY particles
- Bounds on SUSY particle masses are getting higher and higher and thus providing strong constraints
- Low mass bounds on gluino (2.3 TeV), first two generation squarks (1.9 TeV), stop (1.25 TeV) and sbottom (1.5 TeV)
- Hint for Electroweak Fine Tuning problem. 1

As compared to hadron colliders, in e^+e^- colliders we have:²

- well defined energy, momentum and polarization
- high precision measurements
- clean experimental environment
- superior sensitivity for electroweak states
- at lower energies (350GeV), circular e⁺e⁻ colliders can deliver very large luminosities but higher energy e⁺e⁻ requires linear colliders

²from slides of Mogens Dam, Physics at Lepton Colliders, August 2019 = $2 \circ 10^{10}$

Light Bino and Relatively Heavy Right-Handed Selepton

[W. Ahmed, I. Khan, T. Li, SR and W. Zhang, arXiv:2202.11011]

- We use low energy MSSM to probe right-handed sleptons using Higgs-pole and Z-pole solutions
- Higgs-pole $\rightarrow m_{\tilde{\chi}_1^0} \approx \frac{1}{2} m_h$ and Z-pole $\rightarrow m_{\tilde{\chi}_1^0} \approx \frac{1}{2} m_Z$.
- Our solutions satisfy cold dark matter relic density bounds from Planck2018 within 5σ along with other constraints
- We propose a search for the relatively heavier *ẽ_R* at the future lepton colliders with √s = 240 GeV and integrated luminosity 3000 fb⁻¹ via mono-photon channel:
 e⁺_Pe⁻_P → *χ*⁰₁(*bino*) + *χ*⁰₁(*bino*) + *γ*.
- The light neutralinos with large relic density may also be probed at the CEPC where the bino can be pair-produced via t- channel selectron and then bino decays into axino and photon $e^+e^- \rightarrow \tilde{\chi}^0_1(bino) + \tilde{\chi}^0_1(bino) \rightarrow 2\tilde{a} + 2\gamma$ (in preparation)

Results of Scans

Gray points are consistent with the REWSB and LSP neutralino. Green points satisfy the mass bounds including $m_h = 125 \pm 3$ GeV and the constraints from rare *B*-meson decays. Red points form a subset of green points and satisfy the 5 σ Planck bounds on dark matter relic density. Here orange line represents the current XENON1T with 2 t \cdot y bounds.

11/16

Collider Analysis:Probing Relatively Heavy Right-Handed Selepton

- We consider $e^+e^- \rightarrow \nu \bar{\nu} \gamma$ as SM background neglecting events involving W^{\pm} as mediator.
- We study $e^+e^- \rightarrow \tilde{\chi}_1^0(bino) + \tilde{\chi}_1^0(bino) + \gamma @ \sqrt{s} = 240 \text{ GeV}$ with $3000fb^{-1}$

Collider Analysis: Relatively Heavy Right-Handed Selepton

Collider Analysis: Relatively Heavy Right-Handed Selepton

・ロ ・ ・ 日 ・ ・ 目 ・ 日 ・ 日 ・ 14/16

Summary

- The Low scale MSSM parameter space is presented for Z-pole and Higgs-pole
- The light binos with correct relic density may be probed at the CEPC via $e^+e^- \rightarrow \tilde{\chi}^0_1(bino) + \tilde{\chi}^0_1(bino) + \gamma$
- In the Z-pole case the right-handed selectron can be excluded up to 180 GeV and 210 GeV respectively at 3σ and 2σ .
- The right-handed selectron can be excluded up to 140 GeV and 180 GeV respectively at 3σ and 2σ in case of Higgs-pole.
- The light binos with large relic density can decay via ${ ilde \chi}_1^0 o { ilde a}\gamma$
- Such binos can be probed at the CEPC via $e^+e^- \rightarrow \tilde{\chi}_1^0(bino) + \tilde{\chi}_1^0(bino) \rightarrow 2\tilde{a} + 2\gamma$

Thank you very much!