The THDMa and possible e^+e^- signatures

Tania Robens

based on arXiv: 2105.06231/ Symmetry 13 (2021) 12, 2341

Rudjer Boskovic Institute

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022 23.5.2022

Tania Robens

THDMa

CEPC Workshop, 23.5. '22

After Higgs discovery: Open questions

Higgs discovery in 2012 \Rightarrow last building block discovered

? Any remaining questions ?

- Why is the SM the way it is ??
 - \Rightarrow search for underlying principles/ symmetries
- find explanations for observations not described by the SM
 - \Rightarrow e.g. dark matter, flavour structure, ...
- ad hoc approach: Test which other models still comply with experimental and theoretical precision

for all: Search for Physics beyond the SM (BSM)

 \Longrightarrow main test ground for this: particle colliders \Longleftarrow

Tania Robens

Image: A matched block of the second seco

THDMa [arXiv:2105.06231, Symmetry 13 (2021) 12, 2341]

setup: 2 Higgs Doublet Model (Type II), + pseudoscalar a (mixing with A), + dark matter candidate χ (fermionic)

- DM couples to additional field in gauge-eigenstates
- ⇒ promoted by LHC Dark Matter Working group in Phys.Dark Univ. 27 (2020) 100351

original literature: S. Ipek ea, [Phys. Rev. D90 (2014), no. 5 055021]; J. M. No, [Phys. Rev. D93 (2016), no. 3 031701]; D. Goncalves ea, [Phys. Rev. D95 (2017)]; M. Bauer ea, [JHEP 05 (2017) 138]; P. Tunney ea, [Phys. Rev. D96 (2017)]

⇒ highly scrutinized by LHC experiments

Interesting at e^+e^- colliders ??

Image: A math a math

$$\begin{split} \mathbf{V}_{\mathsf{THDM}} &= \mu_1 H_1^{\dagger} H_1 + \mu_2 H_2^{\dagger} H_2 + \lambda_1 (H_1^{\dagger} H_1)^2 + \lambda_2 (H_2^{\dagger} H_2)^2 \\ &+ \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \left[\mu_3 H_1^{\dagger} H_2 + \lambda_5 (H_1^{\dagger} H_2)^2 + h.c. \right] \\ \mathbf{V} &= \frac{1}{2} m_P^2 P^2 + \lambda_{P_1} H_1^{\dagger} H_1 P^2 + \lambda_{P_2} H_2^{\dagger} H_2 P^2 + (i b_P H_1^{\dagger} H_2 P + h.c.) \end{split}$$

$$V_{\chi} = \imath y_{\chi} P \bar{\chi} \gamma_5 \chi$$

THDMa scalar sector particle content: $h, H, H^{\pm}, a, A, \chi$

parameters:

 $v, m_h, m_H, m_a, m_A, m_{H^{\pm}}, m_{\chi}; \cos(\beta - \alpha), \tan\beta, \sin\theta; y_{\chi}, \lambda_3, \lambda_{P_1}, \lambda_{P_2}$

Tania Robens

THDMa: Implemented constraints

[see also Abe ea, JHEP, 01:114, 2020; Arcadi ea, JHEP, 06:098, 2020]

Theory

- boundedness of potential from below
- perturbativity of couplings
- perturbative unitarity

Experiment

- $v, m_{h/H}$: input
- electroweak precision through S, T, U
- $B \rightarrow X_s \gamma, \ B \rightarrow \mu^+ \mu^-, \ \Delta M_s$
- **Г**₁₂₅
- direct searches and 125 GeV signal strength through HiggsBounds/ HiggsSignals
- upper limit on relic density, direct detection [Phys. Rev., D90(5):055021]
- (pseudo) recast from current LHC searches

also using: own codes, Spheno, Sarah, MadDM, Madgraph

Tania Robens

THDMa

Parameter ranges

WG recommendation:

$$m_H = m_A = m_{H^{\pm}}, m_{\chi} = 10 \,\text{GeV},$$

 $\cos(\beta - \alpha) = 0, \tan \beta = 1, \sin \theta = 0.35,$
 $y_{\chi} = 1, \lambda_3 = \lambda_{P_1} = \lambda_{P_2} = 3$

\Rightarrow effectively 2-d scan

• here; let everything float

Scan ranges:

$$\begin{split} &\sin \theta \, \in \, [-1; 0.8] \,, \, \cos \left(\beta - \alpha \right) \, \in \, [-0.08; 0.1] \,, \, \tan \beta \, \in \, [0.52; 9] \,, \\ & m_H \, \in \, [500; 1000] \, \text{GeV}, \, \, m_A \, \in \, [600; 1000] \, \text{GeV}, \\ & m_{H^{\pm}} \, \in \, [800; 1000] \, \text{GeV}, \, \, m_a \, \in \, [5 \, \text{GeV}; \, m_A] \,, \, m_\chi \, \in \, [0 \, \text{GeV}, \, m_a/2] \\ & y_\chi \, \in \, [-\pi; \pi] \,, \, \lambda_{P_1} \, \in \, [0; 10] \,, \, \lambda_{P_2} \, \in \, [0; 4 \, \pi] \,, \, \lambda_3 \, \in \, [-2; 4 \, \pi] \,. \end{split}$$

Example: B- physics constraints

Constraints from
$$B \rightarrow X_s \gamma, B_s \rightarrow \mu^+ \mu^-, \Delta M_s$$

- $B \rightarrow X_s \gamma$: use fit from updated calculation of Misiak ea, [JHEP 2006 (2020) 175, Eur.Phys.J. C77 (2017) no.3, 201], $\Rightarrow \tan \beta_{\min} (m_{H^{\pm}})$
- $B_s \rightarrow \mu^+ \mu^-$, ΔM_s : via SPheno, compare to LHC combination [ATLAS-CONF-2020-049], HFLAV value [Eur.Phys.J.C 81 (2021) 3, 226]

$$\begin{split} R_{\gamma}^{\text{exp}} &\equiv \frac{\mathcal{B}_{(s+d)\gamma}}{\mathcal{B}_{c\ell\nu}} = (3.22 \pm 0.15) \times 10^3, \\ \Delta M_s \, (\text{ps}^{-1}) &= 17.757 \pm 0.020 \pm 0.007, \\ \left(\mathcal{B}_s \to \mu^+ \mu^-\right)^{\text{comb}} &= \left[2.69^{+0.37}_{-0.35}\right] \times 10^{-9} \end{split}$$

Image: A math a math

Tania Robens

THDMa

Oblique parameters via SPheno, compare to GFitter [Eur. Phys. J., C78(8):675]

Direct searches and signal strength

Via HiggsBounds/ HiggsSignals

Relevant BSM searches:

 $\begin{array}{l} H/A \to \tau \, \tau \, \mbox{[ATLAS Run II, Phys.Rev.Lett. 125 (2020) no.5, 051801],} \\ H \to h_{125}h_{125} \, \mbox{[ATLAS 2018 data, JHEP 1901 (2019) 030],} \\ A \to H/h_{125}Z \, \mbox{[ATLAS 2018/ full Run 2 data, Phys.Lett. B783 (2018) 392-414, ATLAS-CONF_2020-043]} \\ \hline \mbox{Tania Robens} \quad \mbox{THDMa} \quad \mbox{CEPC Workshop, 23.5. '22} \end{array}$

LHC searches

Model widely promoted by LHC Dark matter working group

- \Rightarrow searches considered:
 - $h + \not{\!\! E}_{\perp}$: ATLAS, Run II dataset [JHEP 11 (2021) 209]
 - 2 $\ell\ell + \not{\!\!\!E}_{\perp}$: CMS, Run II dataset [Eur. Phys. J. C 81 (2021) 13]

 - (a) $H^+ \bar{t}b, H^+ \rightarrow t \bar{b}$: ATLAS, Run II dataset [JHEP, 06:151; JHEP 06 (2021) 145]
 - **◎** $t \bar{t}, b\bar{b} + \not{\!\!\!E}_{\perp}$: ATLAS, Run II dataset [Eur.Phys.J. C78 (2018) no.1, 18; JHEP 2104 (2021) 174; JHEP 2105 (2021) 093; JHEP, 04:165, 2021]
 - 6 $A \rightarrow Z H$: ATLAS, Run II dataset [Eur. Phys. J., C81(5):396, 2021]
 - (4), (5) not relevant due to tan β \gtrsim 1, m_b small
 - (6) also not relevant (large masses m_A , $m_H \gtrsim m_a$)

 - **but:** all parameter float \Rightarrow no 2-dim clear distinction

Tania Robens

THDMa

Example: Dark matter constraints

color coding: m_{χ}

dominant channels: $\chi \bar{\chi} \to t \bar{t}, b \bar{b}$, depending on m_a main result: $|m_a - 2 m_{\chi}| \le 300 \,\text{GeV}$

Tania Robens

THDMa

a priori: as standard THDM

- new feature: new scalar *a*; mixing: both *a*/*A* can decay invisibly
- interesting channels: ha, hA, Ha, HA
- $\bullet\,$ mass ranges: between 200 ${\rm GeV}$ and $2\,{\rm TeV}$
- most promising: HA, Ha at 3 TeV
- \Rightarrow cross sections up to 1 fb

BRs and rates, HA, 3 TeV

BR for HA final states

...convoluted with production cross sections

[color coding $t \,\overline{t} \, t \,\overline{t}$ final states]

Can the $\not\models$ channel ever be dominant ?

bottom line: can find regions where $t\bar{t} + \not\in$ dominates

Tania Robens

THDMa

"Best" point

$$\begin{split} m_{H} &= \, 643 \, {\rm GeV}, \qquad m_{A} \,= \, 907 \, {\rm GeV}, \qquad m_{a} \,= \, 653 \, {\rm GeV}, \\ \sin \theta \,= \, -0.626, \quad \cos \left(\beta - \alpha\right) \,= \, 0.0027, \quad \tan \beta \,= \, 3.55, \\ \Gamma_{H} \,= \, 2.41 \, {\rm GeV}, \qquad \Gamma_{A} \,= \, 52.5 \, {\rm GeV}, \qquad \Gamma_{a} \,= \, 26.5 {\rm GeV} \end{split}$$

 $\mathsf{BR}(H \to t\,\overline{t}) \sim 0.94, \, \mathsf{BR}(A \to \chi\overline{\chi}) \sim 0.63, \, \mathsf{BR}(a \to \chi\overline{\chi}) \sim 0.95$

 $\sigma_{HA} = 0.51 \,\mathrm{fb}, \, \sigma_{Ha} = 0.39 \,\mathrm{fb} \implies \sigma_{t\bar{t}+\not\!\!\!E} \sim 0.66 \,\mathrm{fb}$

$$[m_{\chi} = 277 \, \text{GeV}, \, y_{\chi} = -1.73]$$

$$[m_{H^{\pm}} = 814\,{\rm GeV},\, \Gamma_{H^{\pm}} = 12.1\,{\rm GeV};\,\,\lambda_3 = 8.63,\,\lambda_{P_1} = 0.18,\,\lambda_{P_2} = 2.98]$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の Q (* CEPC Workshop, 23.5. '22

Tania Robens

THDMa

THDMa: Summary

First scan of THDMa that combines all bounds in a consistent way, letting all unknown parameters float

- if B-physics as strict bound: all heavy scalars have masses $\gtrsim\,500\,{\rm GeV}$! $_{\rm [might be different in fit]}$
- DM set bound on $|m_a-2\,m_\chi|$
- for e⁺e[−]: new signatures X + ∉ [new wrt THDM]
- presented here: *HA*/*a* production at 3 TeV
- \Rightarrow regions in parameter space where $t \, \overline{t} + \not \! E$ dominant
 - a lot to be done ...: simulation including background,