Prospect for Slepton Pair Production in CEI

Joint Workshop of the CEPC Physics, Software & New Detector Concept. May 23-25, 2022

May-24, 2022

In collaboration with Yang Zhang(ZZU). arXiv: 2206.XXXXX

Pengxuan Zhu(朱鹏轩)

Dalian University

Supersymmetry

• A supersymmetry (SUSY) theory:

```
Matter equations = force equations
```

• Why SUSY?

. . .

- A (maybe) good solution to DM mystery.
- New source for the 4.2 σ muon g-2 discrepancy.
- Hierarchy problem.
- Gauge theory unification.

Standard particles

SUSY particles

Illustration by CERN & IES de SAR *Notes: image not entirely!

Slepton searches at Collider

- Light slepton (or slepton-like pariticle, especially smuon-like) is favored to explain
 - Iepton g-2 anomaly (both muon and electron),
 - DM phenomenology.

like SUSY and the model in arXiv: 2104.06421.

- LHC Run-II with 139 fb⁻¹ have already set constraints on di-lepton+ $E_{\rm T}^{\rm miss}$ final states in searches for slepton pair production.
- Compressed spectrum region can be probed via Recursive Jigsaw Reconstruction(RJR) technique.
- Still a gap uncovered for $m_{\tilde{\ell}}$ at $\mathcal{O}(100)$ GeV.

Off-shell production at lepton collider *e*+ **x**

arXiv: 2104.06421 provide an idea of searching $\tilde{\mu}$ via pair production process

$$e^+e^- \rightarrow \tilde{\mu}\tilde{\mu}^{(*)} \rightarrow \mu^+\tilde{\chi}_1^0\mu^-\tilde{\chi}_1^0$$

with one $\tilde{\mu}$ being off-shell.

• On-shell region: $m_{\tilde{\mu}} \leq \sqrt{s/2}$.

Narrow width approximation (NWA)

$$\sigma(e^+e^- \to \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0) \approx \sigma(e^+e^- \to \tilde{\mu}\tilde{\mu}) \times \left(\mathrm{BR}(\tilde{\mu} \to \mu\tilde{\chi}_1^0)\right)^2$$

• NWA is valid in condition: $\sqrt{s/2} - m_{\tilde{u}} \gg \Gamma_{\tilde{u}}$

• Off-shell region: $m_{\tilde{\mu}} > \sqrt{s/2}$:

The cross section of $2 \rightarrow 3$ process is smaller than that of $2 \rightarrow 2$ process by a factor of $16\pi^2$.

Assuming BR($\tilde{\mu} \rightarrow \mu \tilde{\chi}_1^0$) = 1, for 5.05 ab⁻¹ data, about 800 signal events can be produced of mass point $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, m_{\tilde{\mu}})$ 0) GeV.

- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (115, 0)$ GeV: 23.6 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (120, 0)$ GeV: 0.41 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, 0)$ GeV: 0.013 fb

Off-shell production at lepton collider *e*+

arXiv: 2104.06421 provide an idea of searching $\tilde{\mu}$ via pair production process

$$e^+e^- \rightarrow \tilde{\mu}\tilde{\mu}^{(*)} \rightarrow \mu^+\tilde{\chi}_1^0\mu^-\tilde{\chi}_1^0$$

with one $\tilde{\mu}$ being off-shell.

• On-shell region: $m_{\tilde{\mu}} \leq \sqrt{s/2}$.

Narrow width approximation (NWA)

$$\sigma(e^+e^- \to \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0) \approx \sigma(e^+e^- \to \tilde{\mu}\tilde{\mu}) \times \left(\mathrm{BR}(\tilde{\mu} \to \mu\tilde{\chi}_1^0)\right)^2$$

• NWA is valid in condition: $\sqrt{s/2} - m_{\tilde{u}} \gg \Gamma_{\tilde{u}}$

• Off-shell region: $m_{\tilde{\mu}} > \sqrt{s/2}$:

The cross section of $2 \rightarrow 3$ process is smaller than that of $2 \rightarrow 2$ process by a factor of $16\pi^2$.

Assuming BR($\tilde{\mu} \rightarrow \mu \tilde{\chi}_1^0$) = 1, for 5.05 ab⁻¹ data, about 800 signal events can be produced of mass point $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, m_{\tilde{\mu}})$ 0) GeV.

- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (115, 0)$ GeV: 23.6 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (120, 0)$ GeV: 0.41 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, 0)$ GeV: 0.013 fb

Off-shell production at lepton collider *e*+

arXiv: 2104.06421 provide an idea of searching $\tilde{\mu}$ via pair production process

$$e^+e^- \rightarrow \tilde{\mu}\tilde{\mu}^{(*)} \rightarrow \mu^+\tilde{\chi}_1^0\mu^-\tilde{\chi}_1^0$$

with one $\tilde{\mu}$ being off-shell.

• On-shell region: $m_{\tilde{\mu}} \leq \sqrt{s/2}$.

Narrow width approximation (NWA)

$$\sigma(e^+e^- \to \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0) \approx \sigma(e^+e^- \to \tilde{\mu}\tilde{\mu}) \times \left(\mathrm{BR}(\tilde{\mu} \to \mu\tilde{\chi}_1^0)\right)^2$$

• NWA is valid in condition: $\sqrt{s/2} - m_{\tilde{u}} \gg \Gamma_{\tilde{u}}$

• Off-shell region: $m_{\tilde{\mu}} > \sqrt{s/2}$:

The cross section of $2 \rightarrow 3$ process is smaller than that of $2 \rightarrow 2$ process by a factor of $16\pi^2$.

Assuming BR($\tilde{\mu} \rightarrow \mu \tilde{\chi}_1^0$) = 1, for 5.05 ab⁻¹ data, about 800 signal events can be produced of mass point $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, m_{\tilde{\mu}})$ 0) GeV.

- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (115, 0)$ GeV: 23.6 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (120, 0) \text{ GeV}:$ 0.41 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, 0)$ GeV: 0.013 fb

Off-shell production at lepton collider *e*+ **x**

arXiv: 2104.06421 provide an idea of searching $\tilde{\mu}$ via pair production process

$$e^+e^- \rightarrow \tilde{\mu}\tilde{\mu}^{(*)} \rightarrow \mu^+\tilde{\chi}_1^0\mu^-\tilde{\chi}_1^0$$

with one $\tilde{\mu}$ being off-shell.

• On-shell region: $m_{\tilde{\mu}} \leq \sqrt{s/2}$.

Narrow width approximation (NWA)

$$\sigma(e^+e^- \to \mu\mu\tilde{\chi}_1^0\tilde{\chi}_1^0) \approx \sigma(e^+e^- \to \tilde{\mu}\tilde{\mu}) \times \left(\mathrm{BR}(\tilde{\mu} \to \mu\tilde{\chi}_1^0)\right)^2$$

• NWA is valid in condition: $\sqrt{s/2} - m_{\tilde{\mu}} \gg \Gamma_{\tilde{\mu}}$

• Off-shell region: $m_{\tilde{\mu}} > \sqrt{s/2}$:

The cross section of $2 \rightarrow 3$ process is smaller than that of $2 \rightarrow 2$ process by a factor of $16\pi^2$.

Assuming BR($\tilde{\mu} \rightarrow \mu \tilde{\chi}_1^0$) = 1, for 5.05 ab⁻¹ data, about 800 signal events can be produced of mass point $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, m_{\tilde{\mu}})$ 0) GeV.

- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (115, 0)$ GeV: 23.6 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (120, 0)$ GeV: 0.41 fb
- $(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0}) = (140, 0)$ GeV: 0.013 fb

Background & Current Results

	Dominat		
process	Cross Section [fb]	states.	
$\mu\mu$	4967.58	For deta	
ττ	4374.94	give som	
$WW \rightarrow \ell \ell$	392.96	Most cha	
$ZZorWW \rightarrow \mu\mu\nu\nu$	214.81		
$ZZorWW \rightarrow \tau \tau \nu \nu$	205.84	C Lab S	
$\nu Z, Z \rightarrow \mu \mu$	43.33	Decay	
$ZZ \rightarrow \mu\mu\nu\nu$	18.17	Visibl	
$\nu Z, Z ightarrow au au$	14.57	Invisi	
$ZZ \rightarrow \tau \tau \nu \nu$	9.2		
$\nu\nu H, H \rightarrow \tau\tau$	3.07		
$e\nu W,W ightarrow\mu u$	429.2		
$e\nu W, W o \tau \nu$	429.42		
$eeZ, Z \rightarrow \nu\nu$	29.62	\mathbf{I}_a	
$eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$	249.34		

Table from Xuai Zhuang's talk at Snowmass 2021 EF08 BSM Model specific section

May-24, 2022

ted backgrounds are SM processes with OS muon pair + p^{miss} final

ils discussion of SM background, please see next Feng LU's talk. I just ne comment here.

allenge is to distinguish smuon signal from WW background.

Decay tree of Smuon pair and WW BKG

Decay tree of ZZ BKG

Background & Current Results

	Dominat		
process	Cross Section [fb]	states.	
$\mu\mu$	4967.58	For deta	
ττ	4374.94	give som	
$WW \rightarrow \ell \ell$	392.96	Most cha	
$ZZorWW \rightarrow \mu\mu\nu\nu$	214.81		
$ZZorWW \rightarrow \tau \tau \nu \nu$	205.84	C Lab S	
$\nu Z, Z \rightarrow \mu \mu$	43.33	Decay	
$ZZ \rightarrow \mu\mu\nu\nu$	18.17	Visibl	
$\nu Z, Z ightarrow au au$	14.57	Invisi	
$ZZ \rightarrow \tau \tau \nu \nu$	9.2		
$\nu\nu H, H \rightarrow \tau\tau$	3.07		
$e\nu W,W ightarrow\mu u$	429.2		
$e\nu W, W o \tau \nu$	429.42		
$eeZ, Z \rightarrow \nu\nu$	29.62	\mathbf{I}_a	
$eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$	249.34		

Table from Xuai Zhuang's talk at Snowmass 2021 EF08 BSM Model specific section

May-24, 2022

ted backgrounds are SM processes with OS muon pair + p^{miss} final

ils discussion of SM background, please see next Feng LU's talk. I just ne comment here.

allenge is to distinguish smuon signal from WW background.

Decay tree of Smuon pair and WW BKG

Background & Current Results

	Dominat		
process	Cross Section [fb]	states.	
$\mu\mu$	4967.58	For deta	
ττ	4374.94	give som	
$WW \rightarrow \ell \ell$	392.96	Most cha	
$ZZorWW \rightarrow \mu\mu\nu\nu$	214.81		
$ZZorWW \rightarrow \tau \tau \nu \nu$	205.84	C Lab S	
$\nu Z, Z \rightarrow \mu \mu$	43.33	Decay	
$ZZ \rightarrow \mu\mu\nu\nu$	18.17	Visibl	
$\nu Z, Z ightarrow au au$	14.57	Invisi	
$ZZ \rightarrow \tau \tau \nu \nu$	9.2		
$\nu\nu H, H \rightarrow \tau\tau$	3.07		
$e\nu W,W ightarrow\mu u$	429.2		
$e\nu W, W o \tau \nu$	429.42		
$eeZ, Z \rightarrow \nu\nu$	29.62	\mathbf{I}_a	
$eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$	249.34		

Table from Xuai Zhuang's talk at Snowmass 2021 EF08 BSM Model specific section

May-24, 2022

ted backgrounds are SM processes with OS muon pair + p^{miss} final

ils discussion of SM background, please see next Feng LU's talk. I just ne comment here.

allenge is to distinguish smuon signal from WW background.

Decay tree of Smuon pair and WW BKG

Difficulties

- Same decay tree topology
- Invisible states I_a and I_b can not be fully reconstructed.

Background & Current Results

Most challenge is to distinguish smuon signal from WW background.

Different distribution of the angular variables:

• arXiv: 2203.10580, J.R. Yuan, H.J. Cheng, and X.A. Zhuang

Azimuth angle variables: $\Delta \phi(\ell_1, \text{Recoil})$, $\Delta \phi(\ell_1, \text{Recoil})$ and $\Delta \phi(\ell_1, \ell_2)$.

Cone Size variables: $\Delta R(\ell_1, \text{Recoil}), \Delta R(\ell_1, \text{Recoil})$ and $\Delta R(\ell_1, \ell_2)$.

• arXiv: 1810.07659, Q.H. Cao, G. Li, X.K. Pan and J. Zhang

Polar angle $\theta_{\ell^{\pm}}$: Polar angle of the charge lepton ℓ^{\pm} with respect to beam direction.

Background & Current Results

Most challenge is to distinguish smuon signal from WW background.

Decay tree of Smuon pair and WW BKG

Background & Current Results

Most challenge is to distinguish smuon signal from WW background

Decay tree of Smuon pair and WW BKG

Normalized distribution of $\cos \theta_{\ell^+}$, figure from arXiv: 1810.07659

Background & Current Results

Most challenge is to distinguish smuon signal from WW background.

 $m_{\rm T2}$ =

• Different masses. Different distribution of the variables with mass unit:

• arXiv: 2203.10580, J.R. Yuan, H.J. Cheng, and X.A. Zhuang

Energy variable: E_{ℓ_1} , E_{ℓ_2} and sum P_T .

Mass variable: $m_{\ell\ell}$, m_{Recoil} .

• arXiv: 1810.07659, Q.H. Cao, G. Li, X.K. Pan and J. Zhang

MT2 variable: the minimum value of the maximum $m_{\rm T}$ can be reconstructed

$$= \min_{p_{\mathrm{T}}^{\mathrm{I}_{\mathrm{a}}} + p_{\mathrm{T}}^{\mathrm{I}_{\mathrm{b}}} = p_{\mathrm{T}}^{\mathrm{miss}}} \left[\max\left(m_{\mathrm{T}}(p^{\ell_{a}}, p_{\mathrm{T}}^{\mathrm{I}_{\mathrm{a}}}), m_{\mathrm{T}}(p^{\ell_{b}}, p_{\mathrm{T}}^{\mathrm{I}_{\mathrm{b}}}) \right) \right]$$

Background & Current Results

Most challenge is to distinguish smuon signal from WW background.

Decay tree of Smuon pair and WW BKG

Background & Current Results

Most challenge is to distinguish smuon signal from WW background.

 (\mathbf{C})

distribution of m_{Recoil} , figure from arXiv: 2203.10580

Background & Current Results

Most challenge is to distinguish smuon signal from WW background.

(C)

Current Results

Recoil System

• In lepton collider, 4d missing momentum can be reconstructed.

$$p_{\rm miss}^{\mu} = (\sqrt{s}, 0, 0, 0) - \sum p_{\rm vis}^{\mu}$$

• The recoil mass is defined as:

$$m_{\text{Recoil}}^{\mu^+\mu^-} = \sqrt{p_{\text{miss}}^2} = \sqrt{(\sqrt{s} - E_{\mu^+\mu^-})^2 - p_{\mu^+\mu^-}^2}$$

Ge/

10 Ge/

(e) SR-lowDeltaM:*M_{recoil}*

distribution of m_{Recoil} , figure from arXiv: 2203.10580

May-24, 2022

- The discovery sensitivity can reach up to 117 GeV in smuon mass, very close to $\sqrt{s/2}$.
- This impressive result is achieved by "N-1 plots"+"Zn plots"+"several 10,000 attempts".
- The cross section of background in three signal regions are about 0.1 fb to 0.7 fb.

Event reconstruction

Decay tree of Smuon pair and WW BKG

May-24, 2022

 e^+

What can be reconstructed by detector are:

- $p_{V_c}^{\mu}$: four-momentum of muon a;
- $p_{V_k}^{\mu}$: four-momentum of muon b;
- $p_{\text{miss}}^{\mu} = p_{\text{I}_a}^{\mu} + p_{\text{I}_b}^{\mu}$: Vector sum of four-momentum of two invisible particles
- $p_{\rm ISR}^{\mu}$: four-momentum of anything else

b

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

Physical Constraints (Assumptions)

1. $p_{P_a}^{\mu} = p_{V_a}^{\mu} + p_{I_a}^{\mu};$ 2. $p_{P_{\rm b}}^{\mu} = p_{V_{\rm b}}^{\mu} + p_{{\rm I}_{\rm b}}^{\mu};$ 3. $m_{\rm P} = m_{\rm P_a} = m_{\rm P_b};$ 4. $m_{\rm I} = m_{\rm I_a} = m_{\rm I_b}$. 5. $m_{\rm P} > 0$; 6. $m_{\rm I} > 0$. In PP frame,

7.
$$E_{P_a} = E_{P_b} = \left(E_{V_a} + E_{V_b} + E_{miss} \right) / 2$$

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

Physical Constraints (Assumptions)

1. $p_{P_a}^{\mu} = p_{V_a}^{\mu} + p_{I_a}^{\mu};$ 2. $p_{P_b}^{\mu} = p_{V_b}^{\mu} + p_{I_b}^{\mu};$ 3. $m_{\rm P} = m_{\rm P_a} = m_{\rm P_b};$ 4. $m_{\rm I} = m_{\rm I_a} = m_{\rm I_b}$. 5. $m_{\rm P} > 0;$ 6. $m_{\rm I} > 0$.

In PP frame,

7.
$$E_{P_a} = E_{P_b} = \left(E_{V_a} + E_{V_b} + E_{miss} \right) / 2$$

11

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

Physical Constraints (Assumptions)

$$1. p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

$$2. p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$$

$$3. m_{P} = m_{P_{a}} = m_{P_{b}};$$

$$4. m_{I} = m_{I_{a}} = m_{I_{b}}.$$

$$5. m_{P} > 0;$$

$$6. m_{I} > 0.$$
In PP frame,
$$7. E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2$$

/ •

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

What we unknown is the location of the pink dot, but it must satisfy

Physical Constraints (Assumptions)

1.
$$p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

2. $p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$
3. $m_{P} = m_{P_{a}} = m_{P_{b}};$
4. $m_{I} = m_{I_{a}} = m_{I_{b}}.$
5. $m_{P} > 0;$
6. $m_{I} > 0.$
In PP frame,
7. $E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2$

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

What we unknown is the location of the pink dot, but it must satisfy

Physical Constraints (Assumptions)

1.
$$p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

2. $p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$
3. $m_{P} = m_{P_{a}} = m_{P_{b}};$
4. $m_{I} = m_{I_{a}} = m_{I_{b}}.$
5. $m_{P} > 0;$
6. $m_{I} > 0.$
In PP frame,
7. $E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2$

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

What we unknown is the location of

Physical Constraints (Assumptions)

1.
$$p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

2. $p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$
3. $m_{P} = m_{P_{a}} = m_{P_{b}};$
4. $m_{I} = m_{I_{a}} = m_{I_{b}}.$
5. $m_{P} > 0;$
6. $m_{I} > 0.$
In PP frame,
7. $E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2$

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

What we unknown is the location of

Physical Constraints (Assumptions)

1.
$$p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

2. $p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$
3. $m_{P} = m_{P_{a}} = m_{P_{b}};$
4. $m_{I} = m_{I_{a}} = m_{I_{b}}.$
5. $m_{P} > 0;$
6. $m_{I} > 0.$
In PP frame,
7. $E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2$

Event reconstruction

May-24, 2022

What we unknown is the location of

Physical Constraints (Assumptions)

1.
$$p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

2. $p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$
3. $m_{P} = m_{P_{a}} = m_{P_{b}};$
4. $m_{I} = m_{I_{a}} = m_{I_{b}}.$
5. $m_{P} > 0;$
6. $m_{I} > 0.$
In PP frame,
7. $E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2.$

Event reconstruction

May-24, 2022

What we unknown is the location of the pink dot, but it must satisfy

to
$$m_{P_a} > 0$$
.

Physical Constraints (Assumptions)

1.
$$p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

2. $p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$
3. $m_{P} = m_{P_{a}} = m_{P_{b}};$
4. $m_{I} = m_{I_{a}} = m_{I_{b}}.$
5. $m_{P} > 0;$
6. $m_{I} > 0.$
In PP frame,
7. $E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2$

Event reconstruction

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

What we unknown is the location of the pink dot, but it must satisfy

Physical Constraints (Assumptions)

1.
$$p_{P_{a}}^{\mu} = p_{V_{a}}^{\mu} + p_{I_{a}}^{\mu};$$

2. $p_{P_{b}}^{\mu} = p_{V_{b}}^{\mu} + p_{I_{b}}^{\mu};$
3. $m_{P} = m_{P_{a}} = m_{P_{b}};$
4. $m_{I} = m_{I_{a}} = m_{I_{b}}.$
5. $m_{P} > 0;$
6. $m_{I} > 0.$
In PP frame,
7. $E_{P_{a}} = E_{P_{b}} = \left(E_{V_{a}} + E_{V_{b}} + E_{miss}\right) / 2$

Event reconstruction

three vectors \overrightarrow{p}_{V_a} , \overrightarrow{p}_{V_b} and $\overrightarrow{p}_{\text{miss}}$ form a triangle, and three vectors \overrightarrow{p}_{I_a} , \overrightarrow{p}_{I_b} and $\overrightarrow{p}_{\text{miss}}$ form another triangle.

May-24, 2022

There are two independent degree to determine the location of the pink dot:

- ϕ : the angle between visible vector plane and invisible plane.
- R: the distance between the pink dot and the center of yellow round plane.

The boundary means $m_{\rm I} = 0$ GeV.

Given a pink dot, we can solve a set of $(m_{\rm P}, m_{\rm I})$:

Event reconstruction

three vectors \overrightarrow{p}_{V_a} , \overrightarrow{p}_{V_b} and $\overrightarrow{p}_{\text{miss}}$ form a triangle, and three vectors \overrightarrow{p}_{I_a} , \overrightarrow{p}_{I_b} and $\overrightarrow{p}_{\text{miss}}$ form another triangle.

May-24, 2022

What we unknown is the location of the **pink dot**, **but it must satisfy the** physical assumptions, i.e. it must located in the yellow round plane.

There are two independent degree to determine the location of the pink dot:

- ϕ : the angle between visible vector plane and invisible plane.
- R: the distance between the pink dot and the center of yellow round plane.

The boundary means $m_{\rm I} = 0$ GeV.

Given a pink dot, we can solve a set of $(m_{\rm P}, m_{\rm I})$:

Event reconstruction

Given a pink dot, we can solve a set of $(m_{\rm P}, m_{\rm I})$:

In the diameter cross point A (purple point), we can define three observables:

It is easy to say that:

• For the point in the circle of fixed R (pink circle), the $m_{\rm I}$ is the same.

• For the point in the purple circle (fixed r), the $m_{\rm P}$ is the same.

- $m_{\rm RC}^{\rm min}$: the $m_{\rm P}$ by choosing pink dot located in point A.
- $m_{\rm RC}^{\rm max}$: the $m_{\rm P}$ by choosing pink dot located in point B.
- $m_{\rm LSP}^{\rm max}$: the $m_{\rm I}$ by choosing pink dot located in center point O.

$$0 < m_{\rm RC}^{\rm min} \le m_{\rm P}^{\rm true} \le m_{\rm RC}^{\rm max} < \sqrt{s} / 2$$
$$0 \le m_{\rm I}^{\rm ture} \le m_{\rm LSP}^{\rm max}$$

 $m_{
m RC}^{
m min}$ is distributed as a peak shape The $m_{
m RC}^{
m min}$ peak of WW background is located at m_W $0 < m_{
m RC}^{
m min} \le m_{
m P}^{
m true}$

May-24, 2022

Distribution of $m_{\rm LSP}^{\rm max}$ 1.0×10^{2} Events / GeV **CEPC** Simulation - SM Total au au $\sqrt{s} = 240 \text{ GeV}, 5.05 \text{ ab}^{-1}$ ZhZZ $WW^* \rightarrow W^{\pm} \mu^{\mp} \nu$ $ZZ^* \rightarrow Z\ell\ell$ $\mu^{\pm}\mu^{\mp}\nu\nu$ 0.8 ----- $(m_{\tilde{\mu}}m_{\tilde{\chi}_1^0}) = (110, 0) \text{ GeV}$ ----- $(m_{\tilde{\mu}}m_{\tilde{\chi}_1^0}) = (110, 20) \text{ GeV}$ ----- $(m_{\tilde{\mu}}m_{\tilde{\chi}_1^0}) = (110, 40) \text{ GeV}$ 0.6 ---- $(m_{\tilde{\mu}}m_{\tilde{\chi}_1^0}) = (110, 60) \text{ GeV}$ ---- $(m_{\tilde{\mu}}m_{\tilde{\chi}_1^0}) = (110, 80) \text{ GeV}$ ----- $(m_{\tilde{\mu}}m_{\tilde{\chi}_1^0}) = (110, 100) \text{ GeV}$ 0.4 0.2 120 100 0 20 40 60 80 $m_{\rm LSP}^{\rm max}$ [GeV]

 $m_{\rm LSP}^{\rm max}$ is distributed as a peak shape

The $m_{\rm LSP}^{\rm max}$ of background is mostly distributed lower than 50 GeV.

 $0 \le m_{\rm I}^{\rm ture} \le m_{\rm LSP}^{\rm max}$

May-24, 2022

P.X. Zhu Slepton at CEPC@240 GeV

 $m_{\rm LSP}^{\rm max}$ have the similar meaning with $m_{\rm Recoil}$ for WW background, but different meaning for ZZ background.

Distribution of $m_{\rm RC}^{\rm max}$

The $m_{\rm RC}^{\rm max}$ distribution of low mass splitting mass point sharper than large mass splitting.

$$m_{\rm P}^{\rm true} \le m_{\rm RC}^{\rm max} < \sqrt{s} / 2$$

The $m_{\rm RC}^{\rm max}$ cut at 110 GeV almost cut 3/4 background without losing signal events for $m_{\tilde{\mu}} \ge 110$ GeV.

Cross section cutflows

	$\begin{array}{c} \text{Common Cuts} \Delta \end{array}$		$\Delta m_{\rm low}$ Cuts $\Delta m_{\rm low}$		m _{mid} Cuts		$\Delta m_{ m high}$ Cuts			
	Pre- selection	$m_{ m max}^{ m RC}$ > 100	$m_{\ell\ell}$ -Veto Z	$m_{ m LSP}^{ m max} \ge$ 60	$E_{ m T}^{ m miss} \geq$ 60	$\cos\theta_{\ell^+} < 0.5 \\ \cos\theta_{\ell^-} > -0.5$	$m_{ m RC}^{ m min}$ > 80	$m_{ m LSP}^{ m max}$ > 40	$m_{\ell\ell}$ < 100 $\cos heta_{\ell^+}$ < 0.5 $\cos heta_{\ell^-}$ > -0.5	$m_{ m RC}^{ m min}$ < 60 or $m_{ m RC}^{ m min}$ > 80
(110, 0)	71.8	70.7	57.0	7.9	28.3	17.7	14.1	28.1	9.4	6.4
(110, 20)	71.7	70.6	56.8	9.9	27.6	17.5	13.4	33.6	11.8	8.3
(110, 40)	71.1	70.3	56.5	18.7	24.2	15.9	11.1	56.3	22.3	16.1
(110, 60)	69.5	69.3	57.4	56.8	15.4	11.3	4.5	57.4	29.8	16.8
(110, 80)	64.4	64.4	64.4	64.3	0.0	0.0	0.0	64.4	38.4	27.9
(110, 100)	16.3	16.3	16.3	16.3	0.0	0.0	0.0	16.3	12.0	12.0
SM WW	194.1	102.2	91.2	15.3	10.9	2.5	0.8	35.9	7.7	4.2
SM $\mu u W$	5.2	3.4	2.8	0.4	1.2	0.5	0.4	1.2	0.4	0.3
SM ZZ	23.1	8.4	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0
SM $Z\ell\ell$	23.4	9.8	2.6	0.0	0.8	0.4	0.3	2.1	0.4	0.3
SM Zh	3.3	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.0
SM $\mu\mu\nu\nu$	63.3	20.1	17.6	8.7	1.8	0.9	0.5	10.7	4.3	2.4
SM $ au au$	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Cross section cutflows

	Common Cuts Δm_{low} Cut			ts $\Delta m_{\rm mid}$ Cuts			$\Delta m_{ m high}$ Cuts			
	Pre- selection	$m_{ m max}^{ m RC}$ > 100	$m_{\ell\ell}$ -Veto Z	$m_{ m LSP}^{ m max} \ge$ 60	$E_{ m T}^{ m miss} \ge$ 60	$\cos heta_{\ell^+} < 0.5$ $\cos heta_{\ell^-} > -0.5$	$m_{ m RC}^{ m min}$ > 80	$m_{ m LSP}^{ m max}$ > 40	$m_{\ell\ell}$ < 100 $\cos heta_{\ell^+}$ < 0.5 $\cos heta_{\ell^-}$ > -0.5	$m_{ m RC}^{ m min}$ < 60 or $m_{ m RC}^{ m min}$ > 80
(110, 0)	71.8	70.7	57.0	7.9	28.3	17.7	14.1	28.1	9.4	6.4
(110, 20)	71.7	70.6	56.8	9.9	27.6	17.5	13.4	33.6	11.8	8.3
(110, 40)	71.1	70.3	56.5	18.7	24.2	15.9	11.1	56.3	22.3	16.1
(110, 60)	69.5	69.3	57.4	56.8	15.4	11.3	4.5	57.4	29.8	16.8
(110, 80)	64.4	64.4	64.4	64.3	0.0	0.0	0.0	64.4	38.4	27.9
(110, 100)	16.3	16.3	16.3	16.3	0.0	0.0	0.0	16.3	12.0	12.0
SM WW	194.1	102.2	91.2	15.3	10.9	2.5	0.8	35.9	7.7	4.2
SM $\mu u W$	5.2	3.4	2.8	0.4	1.2	0.5	0.4	1.2	0.4	0.3
SM ZZ	23.1	8.4	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0
SM $Z\ell\ell$	23.4	9.8	2.6	0.0	0.8	0.4	0.3	2.1	0.4	0.3
SM Zh	3.3	0.2	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.0
SM $\mu\mu\nu\nu$	63.3	20.1	17.6	8.7	1.8	0.9	0.5	10.7	4.3	2.4
SM $ au au$	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Pre-selection:

- OS muon pair
- $E_{\rm T}^{\rm miss}$ > 5 GeV
- $p_{\rm T}^{\mu}$ > 5 GeV
- $|\eta^{\ell}| < 3$

Results & Summary

- fb $\tilde{\mu}\tilde{\mu}(\star)$
- Off-shell production can be reached by CEPC.
- the result interpreted by Signal Noise Ratio (SNR).
- Discovery sensitivity reach 119 GeV.
- Variables $m_{\rm RC}^{\rm min}$, $m_{\rm RC}^{\rm max}$ and $m_{\rm LSP}^{\rm max}$ are reconstructed in a Lorentz invariant manner, we believe they are successful attempts.
- This is only a temporary result, if the BKG c be suppressed at 0.1 fb level, the detection limit will be pushed greatly.

	9	r	
/	a		

Joint Workshop of the CEPC Physics, Software & New Detector Concept. May 23-25, 2022

May-24, 2022

In collaboration with Yang Zhang(ZZU). arXiv: 2206.XXXXX

Pengxuan Zhu(朱鹏轩)

Dalian University