

Searching for axionlike particles at future electron-positron colliders

Shuo Yang (杨硕)

(Liaoning Normal University)

based on

H.-Y. Zhang, C.-X. Yue, Y.-C. Guo and **SY**, PRD 104 (2021) 9, 096008 C.-X. Yue, **SY**, H. Wang and N. Zhang, arXiv:2204.04702 accepted by PRD

Outline

- 1. Introduction to axion-like particles (ALPs).
- 2. ALPs searches at colliders
- 3. Searching for ALPs at future e⁺e⁻ colliders via light-by-light scattering
- 4. Searching for ALPs via decay $Z \rightarrow af\bar{f}$ at Z factories
- 5. Summary

Introduction to axion-like particles

- The discovery of Higgs bring us into new territory of spin-0 particles.
- Axion have been postulated to address the strong CP problem, which is the pNGB associated to Peccei-Quinn symmetry, a global U(1). m_a~m_π f_π/f_a
- Many extensions of the SM feature one or several spontaneously broken global U(1) symmetries, thus predicting axion-like particles (ALPs).
- ALPs: No direct relation between coupling and mass.

General effective Lagrangian of ALPs

bottom-up view

SMEFT
$$\mathcal{L} = \mathcal{L}_0 + \sum_i \frac{c_i}{\Lambda^{d-4}} \mathbf{O}_i$$

Building Blocks:

SM fields:
$$B_{\mu\nu}, W_{\mu\nu}, G_{\mu\nu}$$

EW scalar doublet:
$$\Phi(x) = \frac{v + h(x)}{\sqrt{2}} e^{i\vec{\pi}\vec{\sigma}/v}$$

New pseduscalar (GB):
$$\frac{\partial_{\mu}a}{f_a}$$

General effective Lagrangian of ALPs

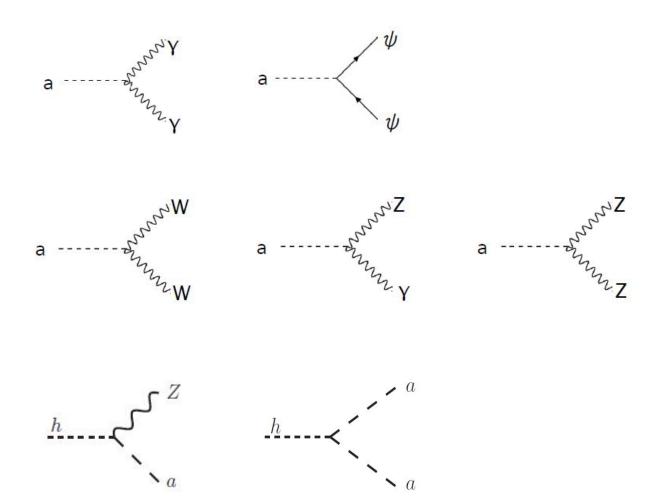
Linear Effective Lagrangian

NLO bosonic operators

$$\mathbf{O}_{\tilde{B}} = -B_{\mu\nu}\tilde{B}^{\mu\nu}\frac{a}{f_{a}} \qquad \qquad \mathbf{O}_{\tilde{G}} = -G_{\mu\nu}^{a}\tilde{G}^{a\mu\nu}\frac{a}{f_{a}}$$

$$\mathbf{O}_{\tilde{W}} = -W_{\mu\nu}\tilde{W}^{\mu\nu}\frac{a}{f_{a}} \qquad \qquad \mathbf{O}_{a\Phi} = i(\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi)\frac{\partial^{\mu}a}{f_{a}}$$

$$\mathcal{L}_{\text{eff}}^{D \leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{M_{a}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F}$$


$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

$$\mathcal{L}_{\text{eff}}^{D \geq 6} = \frac{c_{ah}}{f^{2}} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) \phi^{\dagger} \phi + \frac{c_{Zh}}{f^{3}} \left(\partial^{\mu} a \right) \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) \phi^{\dagger} \phi + \dots$$

H.Georgi, D.B. Kaplan & L. Randall, PLB169(1986)73-78 M.Bauer et al., JHEP12(2017),044

I.Brivio et al., EPJC77(2017),8,572 (including Noliner Effective Lagrangian)

Vertices

ALPs searches at colliders

Prodcution modes

Resonant production

$$gg \to a \quad \gamma \gamma \to a$$

$$e^+e^- \to a \qquad \text{strongly suppresed}$$

Associated production

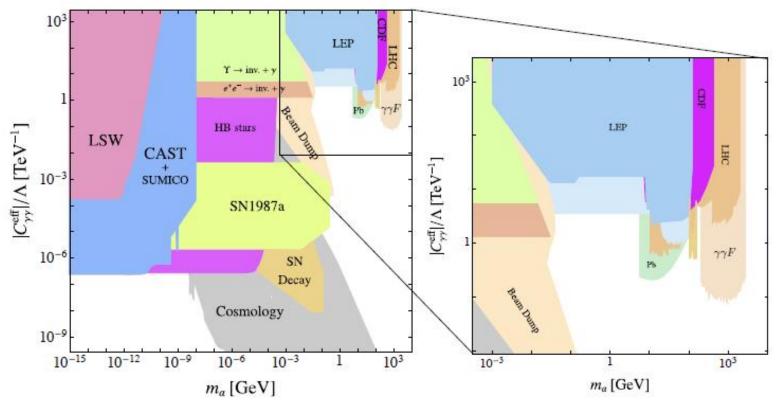
$$pp \rightarrow a W^{\pm}$$
 $pp \rightarrow a Z(\gamma)$
 $pp \rightarrow a h$ $pp \rightarrow t \bar{t} a$ $pp \rightarrow a W^{\pm} \gamma$
 $e^{+}e^{-} \rightarrow a Z(\gamma)$ $e^{+}e^{-} \rightarrow a h$
 $e^{+}e^{-} \rightarrow e^{+}e^{-} a$ $e^{+}e^{-} \rightarrow \nu \bar{\nu} a$

Exotic SM decays

$$h \to Za \quad h \to aa \quad Z \to a\gamma$$

Other modes

Decay channels


- Stable ALPs ~ ₱
- Long-Lived ALPs with a Displaced-Vertex
- Short lived ALP

$$a \to \gamma \gamma$$
 $a \to \ell^+ \ell^ a \to jj$
 $a \to b\bar{b}$ $a \to VV$ $a \to t\bar{t}$

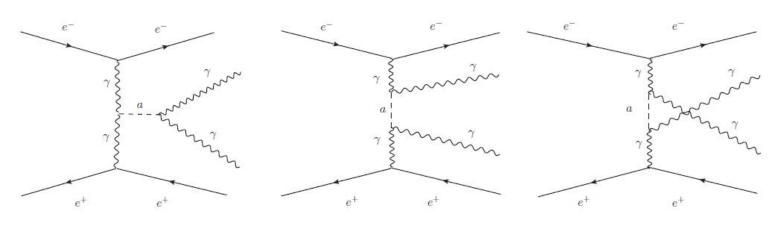
I.Brivio et al., EPJC77(2017),8,572 M.Bauer et al., EPJC79(2019),1,74 CERN Yellow Rep. Monogr. Vol. 3 (2018)

Constraints: di-photon coupling

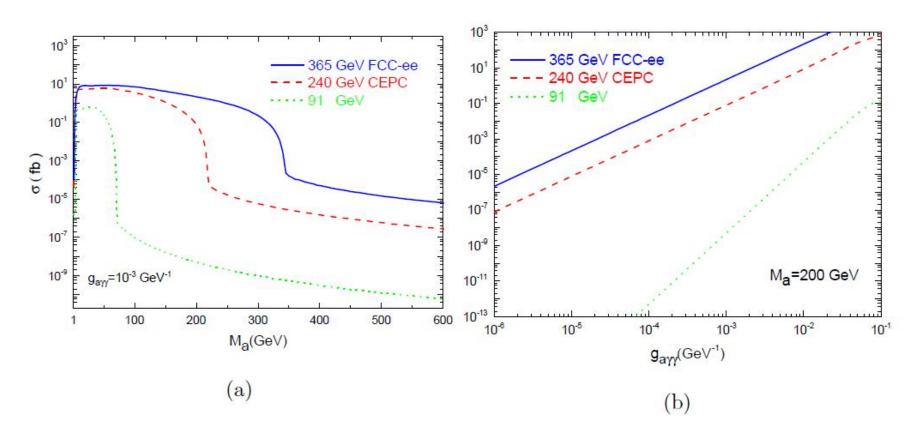
M.Bauer et al., JHEP12(2017),044

1.For light ALPs (<<MeV), cosmological and astrophysical measurements place very tight bounds on the coupling to photons.2. For heavier ALPs, the limits are less stringent.

Searching for ALPs at future e+e- colliders via light-by-light scattering


H-Y Zhang, C-X Yue, Y-C Guo and **SY** PRD 104 (2021) 9, 096008

 The LHC generally is more sensitive to the heavy ALP searches by LBL scattering. The CLIC studies obtain a stonger bounds for TeV ALPs.


C.Baldenegro et al., JHEP06,(2018)131 (LHC LBL)

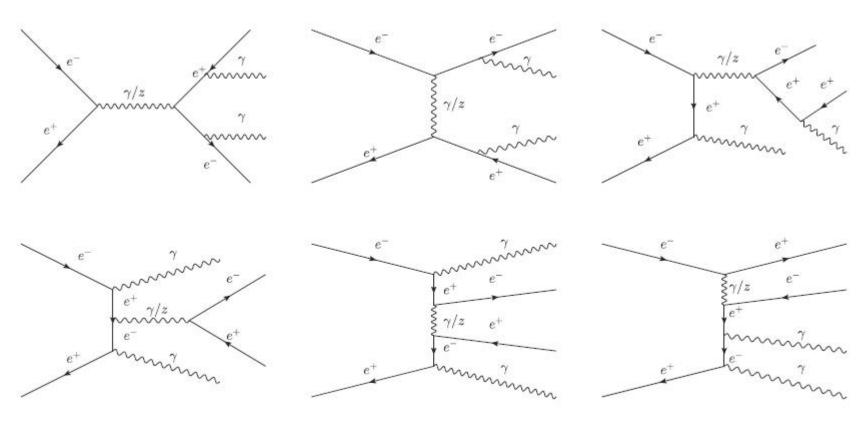
S.C. Inan and A.V. Kisselev, JHEP06(2020)183; Chin.Phys.C 45 (2021) 4, 043109 (CLIC_LBL)

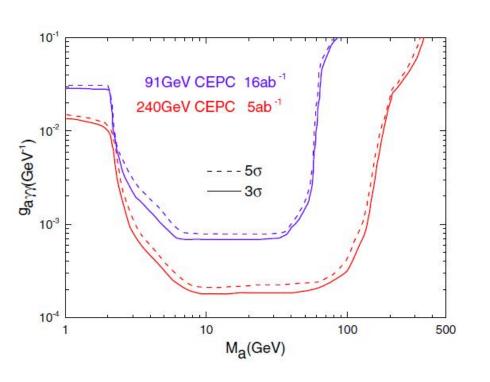
It is interesting to study LBL at the CEPC and FCC-ee.

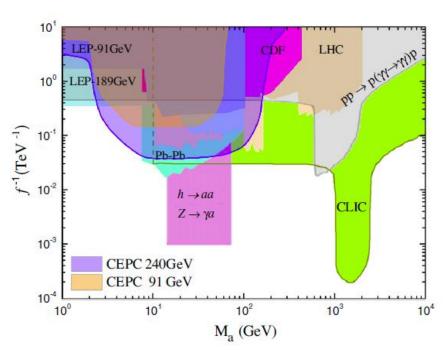
Searching for ALPs at future e+e- colliders via light-by-light scattering

The cross section for LBL scattering

Backgound for the LBL signal




FIG. 3. The typical diagrams for the background of the process $e^+e^- \rightarrow \gamma\gamma e^+e^-$.


Detecting ALPs at the CEPC

Cuts	$\sqrt{s} = 240 \text{ GeV}$	$\sqrt{s} = 91 \text{ GeV}$	
Cut 1. Floatnes and maritum manual varidity	$0.4 < \eta(e^+) < 2.4$	$-0.3 < \eta(e^+) < 0.9$	
Cut-1: Electron and positron pseudo-rapidity	$-2.4 < \eta(e^-) < -0.4$	$-0.9 < \eta(e^-) < 0.3$	
Cut-2: Angle between the ALP and the beam axis	$0.7 < \theta(\gamma\gamma) < 2.4$	$0.7 < \theta(\gamma\gamma) < 2.4$	
Cut-3: Angular separation between electron-positron	$\Delta\theta(e^+e^-) < 2.9$	$\Delta\theta(e^+e^-)<2.4$	
Cut-4: Transverse momentum of reconstructed diphotons	$p_T(\gamma\gamma) > 45 \text{ GeV}$	$p_T(\gamma\gamma) > 20 \text{ GeV}$	

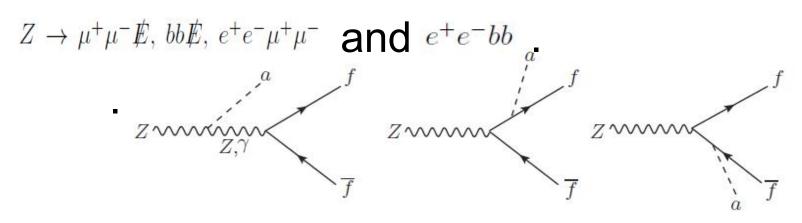
	CEPC @ $\sqrt{s} = 240 \ (91) \ \text{GeV}$								
C	Signal (fb)						Background (fb)		
Cuts $M_a =$	$M_a = 6 \text{ GeV}$	$M_a = 8 \text{ GeV}$	$M_a = 10 \text{ GeV}$	$M_a = 50 \text{ GeV}$	$M_a = 100 \text{ GeV}$	$M_a = 160 \text{ GeV}$	$\gamma\gamma e^{+}e^{-}$		
Basic cuts	3.4378(0.249)	4.8088(0.4796)	5.2928(0.5003)	5.9064(0.2432)	3.585	0.8021	67.0614(98.8986)		
Cut 1	2.9865(0.0316)	3.932(0.1267)	4.138(0.1417)	4.5336(0.0977)	2.4778	0.4436	33.7026(40.928)		
Cut 2	2.1714(0.0309)	3.0176(0.1264)	3.2819(0.1411)	3.1262(0.0904)	1.6993	0.3145	12.628(34.93)		
Cut 3	2.1368(0.0226)	3.0383(0.1156)	3.2422(0.1297)	3.0238(0.0717)	1.6497	0.3052	9.042(8.396)		
Cut 4	1.4(0.0226)	2.2984(0.1156)	2.5065(0.1297)	2.0519(0.0501)	0.8747	0.0392	3.3614(6.1921)		

Prospects for detecting ALP at CEPC

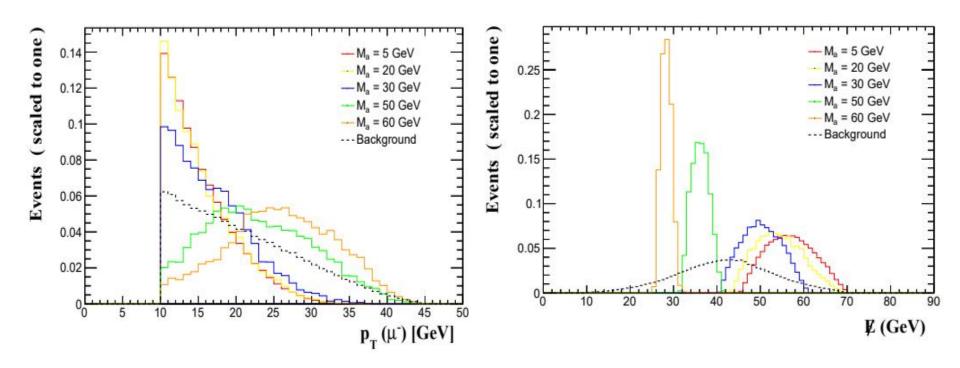
The 3σ and 5σ discovery curves in the $M_a - g_{a\gamma\gamma}$ plane at the CEPC.

The 95% C.L exclusion regions in the $M_a - g_{a\gamma\gamma}$ plane at the CEPC and other colliders

ALPs at the CEPC & FCC-ee


			CEPC @ v	$\sqrt{s} = 240 \ (91) \ \text{GeV}$	V		
	Signal (fb)						Background (fb)
Cuts	$M_a = 6 \text{ GeV}$	$M_a = 6 \text{ GeV}$ $M_a = 8 \text{ GeV}$	$M_a = 10 \text{ GeV}$	$M_a = 50 \text{ GeV}$	$M_a = 100 \text{ GeV}$	$M_a = 160 \text{ GeV}$	$\gamma \gamma e^{+}e^{-}$
Basic cuts	3.4378(0.249)	4.8088(0.4796)	5.2928(0.5003)	5.9064(0.2432)	3.585	0.8021	67.0614(98.8986)
Cut 1	2.9865(0.0316)	3.932(0.1267)	4.138(0.1417)	4.5336(0.0977)	2.4778	0.4436	33.7026(40.928)
Cut 2	2.1714(0.0309)	3.0176(0.1264)	3.2819(0.1411)	3.1262(0.0904)	1.6993	0.3145	12.628(34.93)
Cut 3	2.1368(0.0226)	3.0383(0.1156)	3.2422(0.1297)	3.0238(0.0717)	1.6497	0.3052	9.042(8.396)
Cut 4	1.4(0.0226)	2.2984(0.1156)	2.5065(0.1297)	2.0519(0.0501)	0.8747	0.0392	3.3614(6.1921)

			FCC-ee @	$\sqrt{s} = 365 \ (91) \ \text{Ge}$	V		
Signal (fb)							Background (fb)
Cuts $M_a = 6 \text{ GeV}$		$a=6 \text{ GeV}$ $M_a=8 \text{ GeV}$	$M_a = 10 \text{ GeV}$	$M_a = 50 \text{ GeV}$	$M_a = 100 \text{ GeV}$	$M_a = 200 \text{ GeV}$	$\gamma \gamma e^{+}e^{-}$
Basic cuts	2.9092(0.2483)	5.0074(0.4786)	6.5272(0.5001)	8.4206(0.2432)	7.1235	2.1737	54.203(98.8188)
Cut 1	2.1634(0.0311)	4.2978(0.1265)	5.3419(0.142)	4.5123(0.0977)	4.9093	1.2593	29.233(41.0505)
Cut 2	1.3962(0.0307)	2.6956(0.1261)	3.6755(0.1416)	2.9963(0.0904)	3.1011	0.7942	8.3373(35.0206)
Cut 3	1.2374(0.0223)	2.5417(0.1152)	3.5173(0.1304)	2.8482 (0.0717)	2.9926	0.768	4.8137(8.4019)
Cut 4	0.9014(0.0222)	2.2243(0.115)	3.1819(0.1303)	2.5198(0.05)	2.5458	0.453	2.6445(6.1842)


Searching for ALPs via exotic decay $Z \rightarrow af\bar{f}$ at CEPC

C.-X. Yue, SY, H. Wang and N. Zhang, arXiv:2204.04702 accepted by PRD

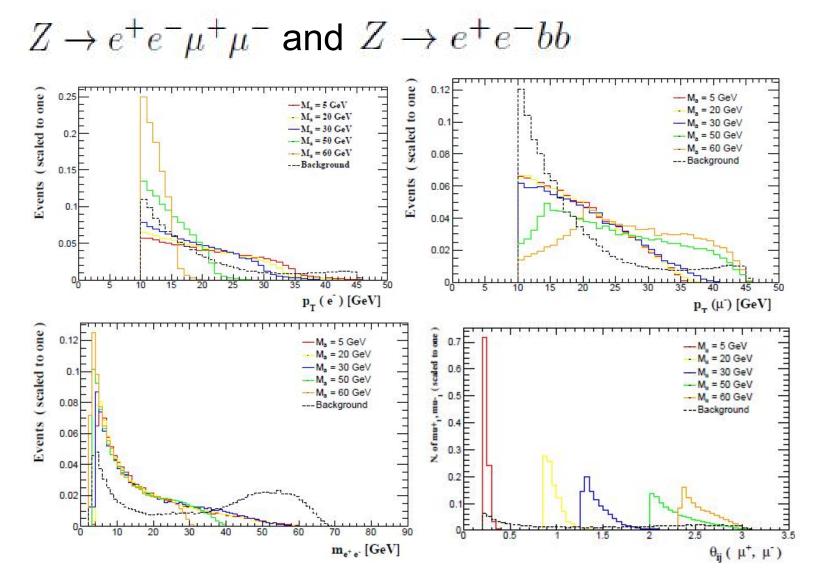
- CEPC and FCC-ee can produce up to 10¹² Z bosons.
- It is possible for the observations of rare decay of Z.
- Future Z factories is powerful for detecing dark sector models via exotic Z decay.
 J.Liu, et al., PRD97,095044,2018.
- We foucus on four types of exotic Z-decay signals

$$Z \to \mu^+ \mu^- E$$
 and $Z \to bb E$

The normalized distribution for kinematic variables for signal $\mu^+\mu^- E$ and BG.

$Z \to \mu^+ \mu^- E \text{ and } Z \to bbE$

Costs	Cross sections for signal(background) (fb)						
Cuts	$m_a = 5 \text{GeV}$	$m_a = 10 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 50 \text{GeV}$	$m_a = 60 \text{GeV}$		
Basic cuts	0.3406(0.2602)	0.3177(0.2602)	0.2368(0.2602)	0.0358(0.2602)	0.0062(0.2602)		
Cut 1-A	0.3404(0.0059)	0.3175(0.0072)	0.2335(0.0300)	0.0343(0.0342)	0.0058(0.0195)		
$S/\sqrt{S+B}$	18.29	17.62	14.38	5.59	1.16		


Cut1-A

$$|m_{\mu^+\mu^-} - m_a| < 3 \text{ GeV}$$

C-t-	Cross sections for signal(background) (fb)						
Cuts	$m_a = 15 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 40 \text{GeV}$	$m_a = 50 \text{GeV}$	m_a =60GeV		
Basic cuts	0.0460(0.7172)	0.03345(0.7172)	0.0284(0.7172)	0.0142(0.7172)	0.0134(0.7172)		
Cut 1-B	0.0449(0.0126)	0.0279(0.08387)	0.0199(0.1832)	0.0078(0.2115)	0.0015(0.1364)		
$S/\sqrt{S+B}$	5.92	2.64	1.39	0.53	0.12		

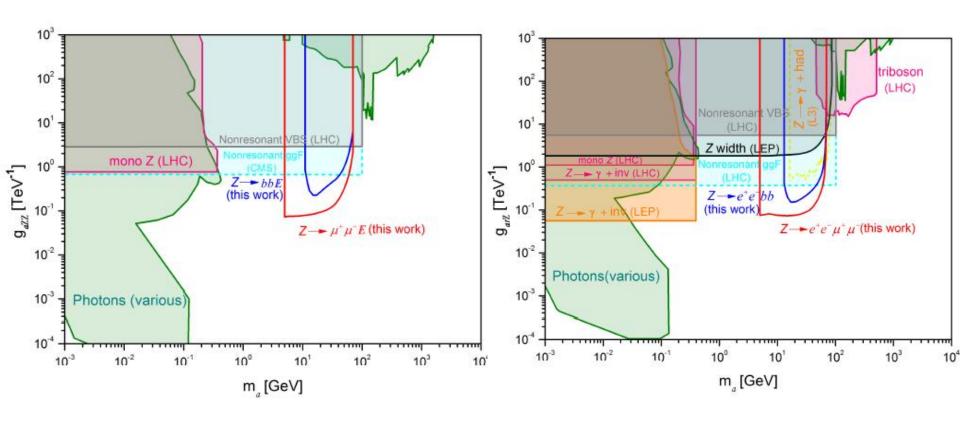
Cut1-B

$$|m_{bb} - m_a| < 5 \text{ GeV}$$

The normalized distribution for kinematic variables for signa $e^+e^-\mu^+\mu^-$ and BG.

$Z \rightarrow e^+e^-\mu^+\mu^-$ and $Z \rightarrow e^+e^-bb$

C-1-	Cross sections for signal(background) (fb)					
Cuts	$m_a = 5 \text{GeV}$	$m_a = 10 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 50 \text{GeV}$	$m_a = 60 \text{GeV}$	
Basic cuts	1.5314(8.0284)	1.4735(8.0284)	1.1559(8.0284)	0.4615(8.0284)	0.1067(8.0284)	
Cut 1-C	1.2659(3.4300)	1.2231(3.4300)	0.9318(3.4300)	0.4258(3.4300)	0.1065(3.4300)	
Cut 2-C	1.2659(0.1743)	1.2215(0.1623)	0.9143(0.1689)	0.4066(0.6499)	0.1005(0.5635)	
$S/\sqrt{S+B}$	33.36	32.83	27.78	12.51	3.90	


Cut-C
$$m_{e^+e^-} < 30~{\rm GeV}$$

$$|m_{\mu^+\mu^-} - m_a| < 3~{\rm GeV}$$

Cuts $m_a = 15$ Ge	Cross sections for signal(background) (fb)						
	$m_a = 15 \text{GeV}$	$m_a = 30 \text{GeV}$	$m_a = 40 \text{GeV}$	$m_a = 50 \text{GeV}$	$m_a = 60 \text{GeV}$		
Basic cuts	0.2058(2.7076)	0.2497(2.7076)	0.1874(2.7076)	0.1191(2.7076)	0.0354(2.7076)		
Cut 1-D	0.1711(1.8332)	0.2251(1.8332)	0.1658(1.8332)	0.1103(1.8332)	0.0353(1.8332)		
Cut 2-D	0.1694(0.1417)	0.1763(0.2081)	0.1106(0.3301)	0.0617(0.5102)	0.0160(0.4212)		
$S/\sqrt{S+B}$	9.61	8.99	5.27	2.58	0.76		

Cut-D

$$m_{e^+e^-} < 30 \text{ GeV}$$
$$|m_{bb} - m_a| < 5 \text{ GeV}$$

Sensitivity bounds

Sensitivity bounds on and at 95% C.L. from exotic Z decays and other current exclusion regions.

Summary

- ALPs have a much wider parameter space and hence generate rich phenomenology at colliders.
- CEPC and FCC-ee can provide a good environment to exploring ALPs.
- The studies on LBL scattering and exotic decay Z → aff
 found that CEPC and FCC-ee might be more sensitive
 to the ALPs in light mass range than LHC. It is expected
 that the future e⁺e⁻ colliders could discovery or exclude
 ALPs.

