Long-lived ALP Searches with Far Detectors at the Electron Positron Collider (FADEPC)

Minglun Tian (田明伦) Wuhan University of Technology

CEPC Snowmass Progress Meeting

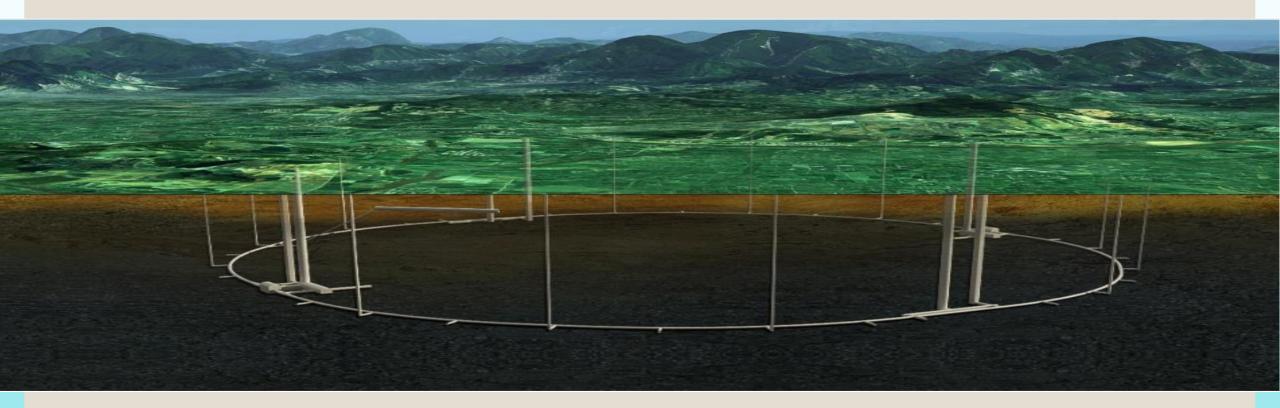
May. 24, 2022

Based on Minglun Tian, K. Wang, and Zeren Simon Wang [hep-ph/2201.08960, PRD 101 (2020) 075046]

OUTLINE

FADEPC

 \rightarrow geometry, shape, volume, position, ...


 \rightarrow previous physics scenarios

Long-lived ALP Searches

$$\begin{array}{l} \stackrel{\bullet}{\rightarrow} C_{\gamma Z} = 0 \\ \stackrel{\bullet}{\rightarrow} C_{\gamma Z} = C_{\gamma \gamma} \\ \stackrel{\bullet}{\rightarrow} \text{free } C_{\gamma Z}, C_{\gamma \gamma} \text{ parameters} \end{array}$$

Conclusion & Discussion

CEPC Civil Engineering

FDs can be placed on the ground above the IPs.

FADEPC

Long-lived ALP Searches

Conclusion & Discussion

CEPC Civil Engineering

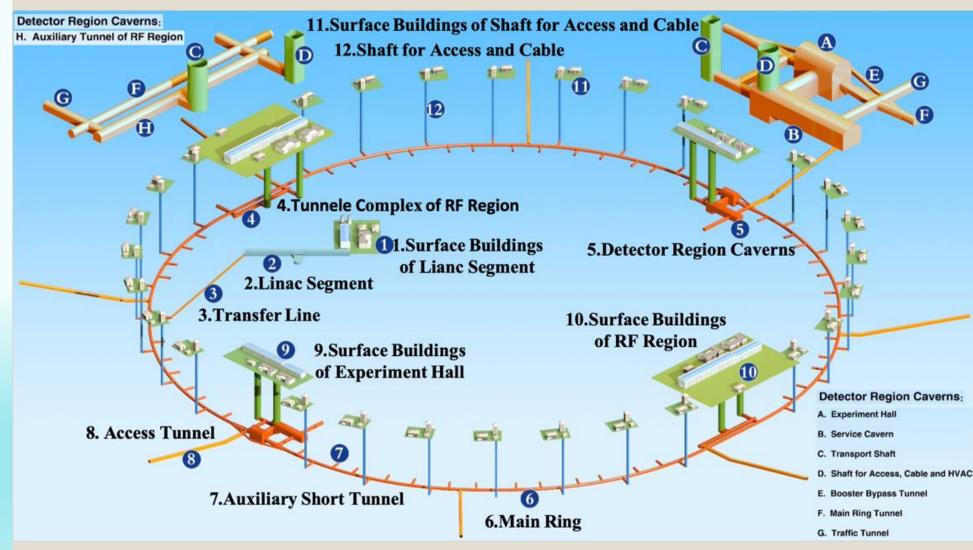
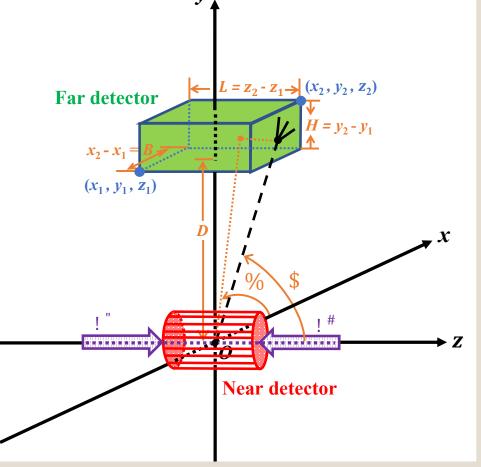


Figure based on [Lei Ye, Workshop on the Circular Electron-Positron Collider, Oxford, (2019)]

FADEPC

FDs can also be placed inside the experiment hall if the hall is big enough.

Or, placed in a cavern or shaft near the experiment hall. Long-lived ALP Searches


Conclusion & Discussion

FADEPC

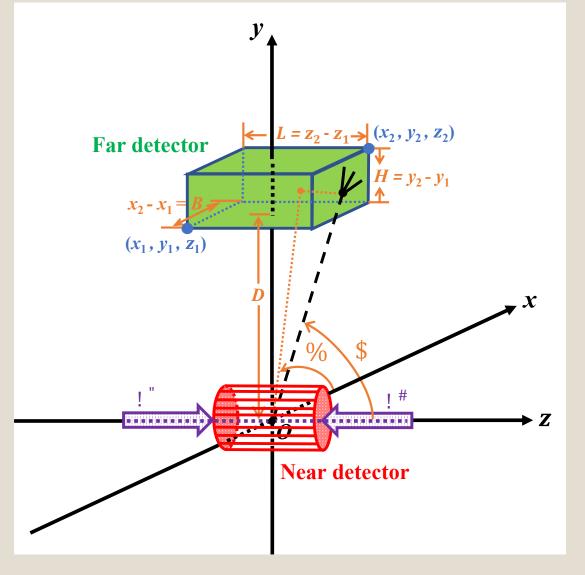
Far Detectors at the Electron Positron Collider (FADEPC)

First proposed & different designs of FDs in [PRD 101 (2020) 075046]

	$V [m^3]$	B [m]	H [m]	L [m]	$(x_1,y_1,z_1)[{ m m}]$	$(x_2,y_2,z_2)[{ m m}]$	D [m]
FD1	5.0×10^3	10	10	50	(5, -5, -25)	(15, 5, 25)	5
					(10, -5, -25)	(20,5,25)	10
FD2	$8.0 imes 10^5$	200	20	200	(-100, 50, 50)	$(100, \ 70, 250)$	50
					(-100, 100, 100)	(100, 120, 300)	100
FD3	$8.0 imes 10^5$	200	20	200	(-100, 50, -100)	$(100, \ 70, 100)$	50
					(-100, 100, -100)	(100, 120, 100)	100
FD4	$8.0 imes 10^5$	100	80	100	(-50, 50, -50)	(50,130,50)	50
					(-50, 100, -50)	(50,180,50)	100
FD5	$3.2 imes 10^6$	200	80	200	(-100, 50, -100)	(100,130,100)	50
					(-100, 100, -100)	(100, 180, 100)	100
FD6	$8.0 imes 10^7$	1000	80	1000	(-500, 50, -500)	(500, 130, 500)	50
					(-500, 100, -500)	(500, 180, 500)	100
FD7	$8.0 imes 10^5$	2000	20	20	(-1000, 50, -10)	$(1000, \ 70, 10)$	50
					(-1000, 100, -10)	(1000,120,10)	100
FD8	$8.0 imes 10^5$	20	20	2000	(-10, 50, -1000)	$(10, \ 70, 1000)$	50
					(-10, 100, -1000)	(10, 120, 1000)	100

Simple shape: cuboid, similar to MUTHUSLA Varying: position & geometry size

LLP Searches with FADEPC


When $\lambda \sim \mathcal{O}(100)$ m,

FADEPC

Mainly travel through and acts as missing energy in the near detector.

Far detector is more likely to observe the decay process, and reconstruct the time, position, direction, momentum, mass, etc.

Far detector can enhance the discovery potential for LLPs with very long decay length.

Long-lived ALP Searches

Conclusion & Discussion

Previous Physics Scenarios

Exotic Higgs Decays Heavy Neutral Leptons Light Neutralinos in RPV SUSY

scenario		$h \to XX$	$Z \to N \nu$	$Z ightarrow ilde{\chi}_1^0 ilde{\chi}_1^0$	
LLP		X light scalar	N	$ ilde{\chi}^0_1$ light fer	rmion
production		$Zh \ ({ m main})$	Z		
$e^-e^+ \rightarrow$		$\nu \bar{\nu} h, e^- e^+ h$ (VBF)			
$\sqrt{s} [\text{GeV}]$		240	91.2		has been undeted
N_h	CEPC	1.14×10^{6} [16]			has been updated to 1.5×10^{12}
	FCC-ee	1.14×10^{-1} [10] 5.6 ab ⁻¹ , 7 years, 2 IPs			
N_Z	CEPC		7.0 imes 1	10^{11} [16] 16 ab	⁻¹ , 2 years, 2 IPs
	FCC-ee		5.0 imes 1	10^{12} [20] 150 at	b ⁻¹ , 4 years, 2 IPs

Results shown in [PRD 101 (2020) 075046]

Long-lived ALP Searches

Conclusion & Discussion

ALP lagrangian

5 dimension ALP effective lagrangian

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_a^2}{2} a^2 + g^2 C_{WW} \frac{a}{\Lambda} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A} + g'^2 C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}$$

electroweak symmetry breaking

$$\mathcal{L}_{\text{eff}} \supset e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{2e^2}{s_w c_w} C_{\gamma Z} \frac{a}{\Lambda} F_{\mu\nu} \tilde{Z}^{\mu\nu} + \frac{e^2}{s_w^2 c_w^2} C_{ZZ} \frac{a}{\Lambda} Z_{\mu\nu} \tilde{Z}^{\mu\nu} .$$

$$C_{\gamma\gamma} = C_{WW} + C_{BB} C_{\gamma Z} = c_w^2 C_{WW} - s_w^2 C_{BB} C_{ZZ} = c_w^4 C_{WW} + s_w^4 C_{BB}$$

$$C_{ZZ} = c_w^4 C_{WW} + s_w^4 C_{BB}$$

$$C_{ZZ} = c_w^4 C_{WW} + s_w^4 C_{BB}$$

Long-lived ALP Searches

Conclusion & Discussion

ALP Signal

$$e^-e^+ \rightarrow \gamma a, a \rightarrow \gamma \gamma$$

@ $\sqrt{s} = 91.2 \text{ GeV}$

$$e^{-}$$
 γ, Z γ, X
 e^{+} a^{-} a^{-}

import ALP model in Madgraph5 to simulate the event arxiv:1701.05379 PYTHIA8: perform ALP decay

$$\Gamma(a o \gamma \gamma) = 4\pi \alpha^2 m_a^3 \left| \frac{C_{\gamma \gamma}}{\Lambda} \right|^2$$

arxiv:1808.10323

differential cross section

Long-lived ALP Searches

Conclusion & Discussion

ALP Signal

$$\frac{d\sigma(e^-e^+ \to \gamma a)}{d\Omega} = 2\pi\alpha\alpha^2(s)\frac{s^2}{\Lambda^2}\left(1 - \frac{m_a^2}{s}\right)^3\left(1 + \cos^2\theta\right)$$
$$\times\left(|V_\gamma(s)|^2 + |A_\gamma(s)|^2\right)$$

$$V_{\gamma}(s) = \frac{C_{\gamma\gamma}}{s} + \frac{g_V}{2c_w^2 s_w^2} \frac{C_{\gamma Z}}{s - m_Z^2 + im_Z \Gamma_Z}$$
$$A_{\gamma}(s) = \frac{g_A}{2c_w^2 s_w^2} \frac{C_{\gamma Z}}{s - m_Z^2 + im_Z \Gamma_Z}$$

$$g_V = 2s_w^2 - 1/2$$
 and $g_A = -1/2$

arxiv:1808.10323

Long-lived ALP Searches

Conclusion & Discussion

ALP Signal

$$\sigma(e^-e^+ \to \gamma a) \approx 16 \,\text{fb} \times \left(\frac{\text{TeV}}{\Lambda}\right)^2 \left(1 - \frac{m_a^2}{s}\right)^3$$
$$\left(|C_{\gamma\gamma}|^2 + 2680 |C_{\gamma Z}|^2 - 0.082 |C_{\gamma\gamma} C_{\gamma Z}|\right)$$

$$\Gamma(a \to \gamma \gamma) = 4\pi \alpha^2 m_a^3 \left| \frac{C_{\gamma \gamma}}{\Lambda} \right|^2$$

$$e^-e^+ \rightarrow \gamma a, a \rightarrow \gamma \gamma$$

@ $\sqrt{s} = 91.2 \text{ GeV}$

Long-lived ALP Searches

Conclusion & Discussion

Number of Signal Events

$$N_{\rm LLP}^{\rm obs} = N_{\rm LLP}^{\rm prod} \cdot \langle P[\text{LLP in f.v.}] \rangle \cdot \text{Br}(\text{LLP} \rightarrow \text{visible})$$

average decay probabilities in FD

$$P[(ALP)_i \text{ in f.d.}] = e^{\left(-D_i^{\text{first}}/\lambda_i\right)} - e^{\left(-D_i^{\text{last}}/\lambda_i\right)}$$

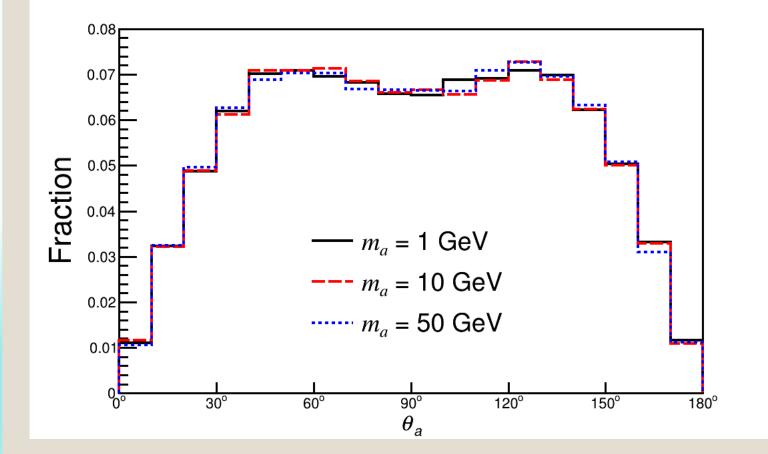
probability of decaying inside the FD

in the lab. frame:

$$\lambda = \beta c \ \gamma \tau = \frac{p}{E} \frac{E}{m} c\tau = \frac{p}{m} c\tau$$

$$\lambda_i \approx 15 \,\mathrm{m} \left(\frac{s - m_a^2}{m_a \sqrt{s}}\right) \left(\frac{\mathrm{GeV}}{m_a}\right)^3 \left(\frac{\Lambda}{\mathrm{TeV}}\right)^2 \left(\frac{10^{-4}}{C_{\gamma\gamma}}\right)^2$$

of signal events

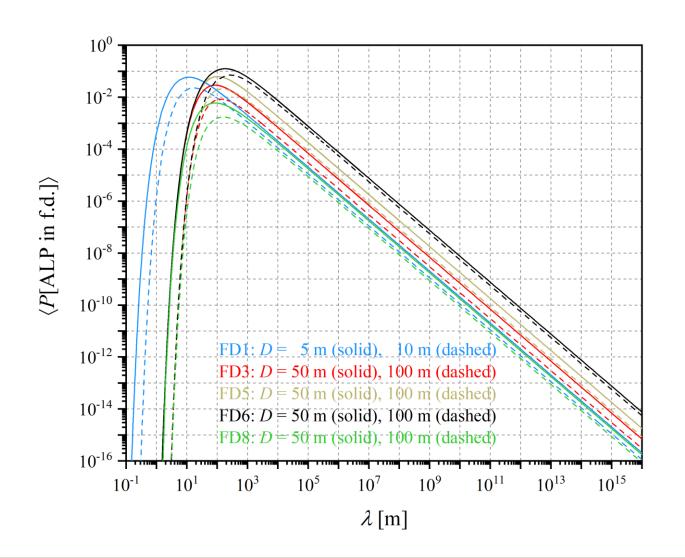

In general, depends on theory models (kinematics, parameters) & geometry of FD

For fixed FD & ALP model: a complicated function of model parameters: $C_{\gamma\gamma}/\Lambda$, $C_{\gamma Z}/\Lambda \& m_a$

Long-lived ALP Searches

Conclusion & Discussion

Kinematical Distributions


Two peaks around $90^{\circ} \pm 40^{\circ}$

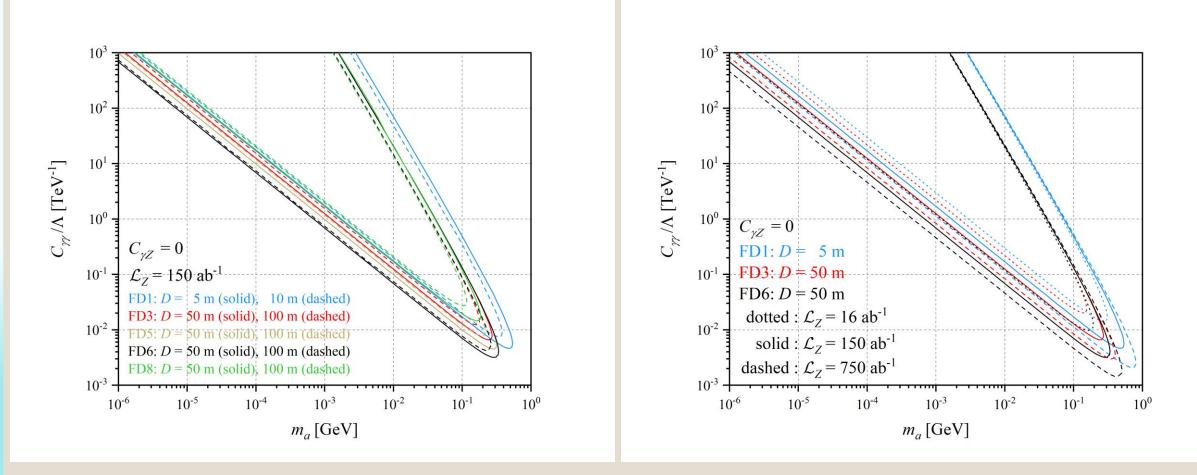
FDs in the very forward direction like FASER may not work at ee colliders. Better to be installed in the central region.

Long-lived ALP Searches

Conclusion & Discussion

Average Decay Probabilities

FDs with smaller distance from the IP have higher probabilities

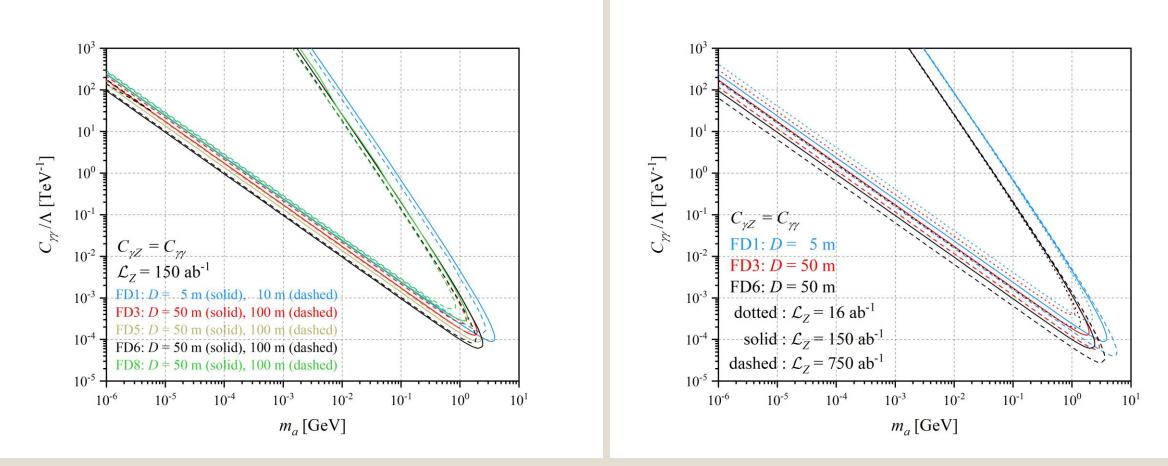

 \Rightarrow Closer distance is helpful to improve the discovery potentials.

The decay lengths λ corresponding to peak values are slightly higher than *D*.

Long-lived ALP Searches

Conclusion & Discussion

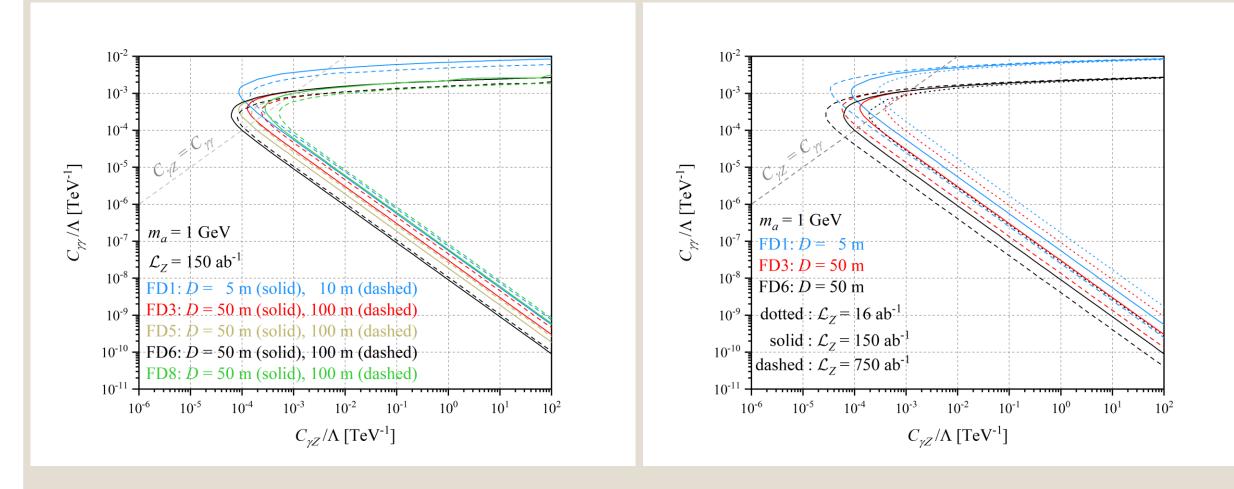
Limits for $C_{\gamma Z} = 0$



smaller D, bigger V, perpendicular location \rightarrow stronger discovery limits

Long-lived ALP Searches

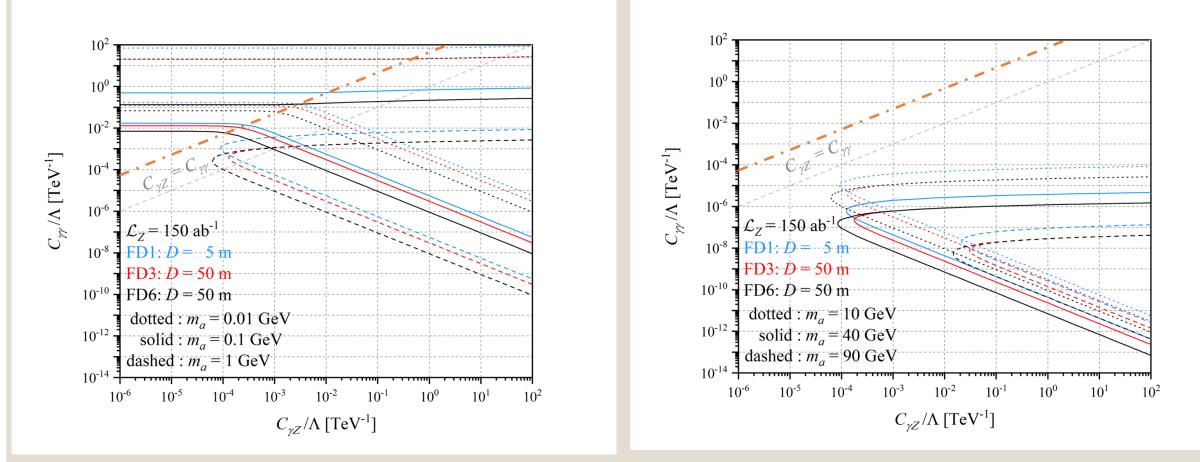
Conclusion & Discussion


Limits for $C_{\gamma Z} = C_{\gamma \gamma}$

→ Lower $C_{\gamma\gamma}/\Lambda$, slightly larger m_a reaches → Larger luminosity is helpful to probe more parameter space with lower $C_{\gamma\gamma}/\Lambda$

Limits for Free $C_{\gamma Z}, C_{\gamma \gamma}$ Parameters

FADEPC



17

Long-lived ALP Searches

Conclusion & Discussion

Free $C_{\gamma Z}, C_{\gamma \gamma}$ Parameters

→ Discoverable regions shift downward with increasing m_a → Discovery regions shift rightward when $m_a > 40$ GeV

Conclusion

Proposed to install Far Detectors at the Electron Positron Collider (FADEPC), such as at CEPC & developed 8 basic designs

Previous LLP searches for $Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0, Z \to \nu N$, $h \to XX$ physics scenarios.

ALP signal from $e^-e^+ \rightarrow \gamma a$, $a \rightarrow \gamma \gamma @ \sqrt{s} = 91.2 \text{ GeV}$

FADFPC

Forecast limits for 3 cases: $C_{\gamma Z} = 0$; $C_{\gamma Z} = C_{\gamma \gamma}$; free $C_{\gamma Z}, C_{\gamma \gamma}$ parameters Smaller *D*, bigger *V*, perpendicular location \rightarrow stronger discovery limits Larger luminosity is helpful to probe more parameter space with lower $C_{\gamma \gamma}/\Lambda$

Discussion

Long-lived ALP searches with ND @ CEPC

To realize such FDs, more pre-studies are needed.

For example:

FADFPC

More designs.

Investigate the physics potential and optimize the designs in the context of more physics scenarios, different center-of-mass energies, background analysis.

Take into account more realistic factors, including the availability of the space, the technology, cost and shielding of the detectors, the reusing possibility at the SppC/FCC-hh.

Consider other applications: probing neutrinos, cosmic rays, etc.