

Probing the Electroweak Phase Transition with Exotic Higgs Decays

Ke-Pan Xie (谢柯盼)

University of Nebraska-Lincoln

2022.5.25 @CEPC workshop 2022 (online)

Snowmass whitepaper 2203.08206 with Marcela Carena, Jonathan Kozaczuk, Zhen Liu, Tong Ou, Michael J. Ramsey-Musolf, Jessie Shelton and Yikun Wang

Electroweak phase transition

Electroweak phase transition

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

Electroweak phase transition

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

New physics from Light degrees of freedom

New physics from Light degrees of freedom

$$V = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{a_1}{2} |H|^2 S + \frac{a_2}{2} |H|^2 S^2 + b_1 S + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4$$

2. Singlet
$$Z_2$$

$$V = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{a_2}{2} |H|^2 S^2 + \frac{b_2}{2} S^2 + \frac{b_4}{4} S^4 \begin{cases} [Kozaczuk et al, 1911.10210] \\ Z_2 \text{ preserving} \end{cases}$$
[Carena et al, 1911.10206]
 $Z_2 \text{ spontaneous breaking} \end{cases}$

Motivated by dark matter,^[1407.0688] composite Higgs^[1909.02014], etc

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2S^2 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4$$

After EW symmetry breaking, Higgs exotic decay

$$V \supset -\frac{a_2 v_{\rm EW}}{2} hS^2 \qquad \qquad \Gamma(h \to SS) = \frac{a_2^2 v_{\rm EW}^2}{32\pi m_h} \sqrt{1 - \frac{4m_S^2}{m_h^2}}$$

Motivated by dark matter,^[1407.0688] composite Higgs^[1909.02014], etc

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2S^2 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4$$

After EW symmetry breaking, Higgs exotic decay

$$V \supset -\frac{a_2 v_{\rm EW}}{2} hS^2 \qquad \qquad \Gamma(h \to SS) = \frac{a_2^2 v_{\rm EW}^2}{32\pi m_h} \sqrt{1 - \frac{4m_S^2}{m_h^2}}$$

Thermal correction and phase transition

$$V = -\frac{\mu^2 - c_h T^2}{2} h^2 + \frac{\lambda}{4} h^4 + \frac{a_2}{4} h^2 S^2 + \frac{b_2 + c_S T^2}{2} S^2 + \frac{b_4}{4} S^4$$

$$c_h = \frac{1}{48} \left(24a_2 + 9g^2 + 3g'^2 + 24\lambda + 12y_t^2 \right),$$

$$c_S = \frac{1}{12} \left(2a_2 + 3b_4 \right)$$

Motivated by dark matter,^[1407.0688] composite Higgs^[1909.02014], etc

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2S^2 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4$$

After EW symmetry breaking, Higgs exotic decay

$$V \supset -\frac{a_2 v_{\rm EW}}{2} hS^2 \qquad \qquad \Gamma(h \to SS) = \frac{a_2^2 v_{\rm EW}^2}{32\pi m_h} \sqrt{1 - \frac{4m_S^2}{m_h^2}}$$

Thermal correction and phase transition

$$V = -\frac{\mu^2 - c_h T^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2 S^2 + \frac{b_2 + c_S T^2}{2}S^2 + \frac{b_4}{4}S^4$$

$$c_h = \frac{1}{48} \left(24a_2 + 9g^2 + 3g'^2 + 24\lambda + 12y_t^2 \right),$$

$$c_S = \frac{1}{12} \left(2a_2 + 3b_4 \right)$$

Two steps:

1 2nd-order phase transition

2 1st-order electroweak phase transition

Motivated by dark matter,^[1407.0688] composite Higgs^[1909.02014], etc

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2S^2 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4$$

Higgs exotic decay

$$V \supset -\frac{a_2 v_{\rm EW}}{2} hS^2 \qquad \qquad \Gamma(h \to SS) = \frac{a_2^2 v_{\rm EW}^2}{32\pi m_h} \sqrt{1 - \frac{4m_S^2}{m_h^2}}$$

Thermal correction and phase transition

Condition for two degenerate vacua $V = -\frac{\mu^2 - c_h T^2}{2} h^2 + \frac{\lambda}{4} h^4 + \frac{a_2}{4} h^2 S^2 + \frac{b_2 + c_S T^2}{2} S^2 + \frac{b_4}{4} S^4 \quad \clubsuit$ Some facts: [1909.02014]

- 1. ABCD could be either local extrema or saddle points;
- 2. If D is a minimum then BC are saddle points;
- 3. If A is a minimum then BC are saddle points, while D is NOT a minimum.
- 4. The only case of two degenerate vacua is BC, which requires $b_2 < 0$.

$$m_S = \sqrt{b_2 + \frac{a_2^2}{2}v_{\rm EW}^2}$$

Condition for two degenerate vacua $V = -\frac{\mu^2 - c_h T^2}{2} h^2 + \frac{\lambda}{4} h^4 + \frac{a_2}{4} h^2 S^2 + \frac{b_2 + c_S T^2}{2} S^2 + \frac{b_4}{4} S^4$

Some facts: [1909.02014]

- 1. ABCD could be either local extrema or saddle points;
- 2. If D is a minimum then BC are saddle points;
- 3. If A is a minimum then BC are saddle points, while D is NOT a minimum.
- 4. The only case of two degenerate vacua is BC, which requires $b_2 < 0$.

$$m_S = \sqrt{b_2 + \frac{a_2^2}{2}v_{\rm EW}^2}$$

Therefore we get

$$a_2 > \frac{2m_S^2}{v_{\rm EW}^2}$$

Condition for two degenerate vacua $V = -\frac{\mu^2 - c_h T^2}{2} h^2 + \frac{\lambda}{4} h^4 + \frac{a_2}{4} h^2 S^2 + \frac{b_2 + c_S T^2}{2} S^2 + \frac{b_4}{4} S^4$

Some facts: [1909.02014]

- 1. ABCD could be either local extrema or saddle points;
- 2. If D is a minimum then BC are saddle points;
- 3. If A is a minimum then BC are saddle points, while D is NOT a minimum.
- 4. The only case of two degenerate vacua is BC, which requires $b_2 < 0$.

Condition for two degenerate vacua $V = -\frac{\mu^2 - c_h T^2}{2} h^2 + \frac{\lambda}{4} h^4 + \frac{a_2}{4} h^2 S^2 + \frac{b_2 + c_S T^2}{2} S^2 + \frac{b_4}{4} S^4$

Some facts: [1909.02014]

- 1. ABCD could be either local extrema or saddle points;
- 2. If D is a minimum then BC are saddle points;
- 3. If A is a minimum then BC are saddle points, while D is NOT a minimum.
- 4. The only case of two degenerate vacua is BC, which requires $b_2 < 0$.

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

The general Higgs + singlet case

The potential in unitary gauge

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_1}{4}h^2S + \frac{a_2}{4}h^2S^2 + b_1S + \frac{b_2}{2}S^2 + \frac{b_3}{3}S^3 + \frac{b_4}{4}S^4$$
$$\boxed{h \to v_{\rm EW} + h, \quad S \to v_s + S}$$

Shift S such that $v_s = 0$; expand around vacuum

$$\frac{\text{Singlet-like}}{\text{Higgs-like}} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} S \\ h \end{pmatrix}$$

Exotic decay

$$V \supset \frac{1}{2}\lambda_{211}h_2h_1^2 \qquad \Gamma(h_2 \to h_1h_1) = \frac{1}{32\pi m_2}\lambda_{211}^2\sqrt{1 - \frac{4m_1^2}{m_2^2}}$$

Light S: LEP & LHC-- $|\sin \theta| \lesssim 0.07$; future colliders $|\sin \theta| \sim 0.01$

$$\begin{split} \lambda &= \frac{m_2^2}{2v_{\rm EW}^2} + \mathcal{O}(\theta^2), \quad b_2 = -\frac{1}{2}a_2v_{\rm EW}^2 + m_1^2 + \mathcal{O}(\theta^2) \times m_2^2, \\ a_1 &= \mathcal{O}(\theta) \times \frac{m_2^2}{v_{\rm EW}}, \quad b_1 = \mathcal{O}(\theta) \times m_2^2 v_{\rm EW} \end{split}$$
 [Kozaczuk *et al*, 1911.10210]
$$\frac{\lambda_{211}}{v_{\rm EW}} = -a_2 + \mathcal{O}(\theta^2)$$

The general Higgs + singlet case

The general Higgs + singlet case

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

The Z₂ spontaneous breaking scenario

Motivated by dark symmetry breaking models^[Carena et al, 1911.10206]

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2S^2 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4$$

A complete one-loop level analysis

$$V_{\rm CW} = \frac{1}{64\pi^2} \left(\sum_B n_B m_B^4(h, S) \left[\ln \frac{m_B^2(h, S)}{Q^2} - c_B \right] - \sum_F n_F m_F^4(h, S) \left[\ln \frac{m_F^2(h, S)}{Q^2} - \frac{3}{2} \right] \right)$$
$$V^T(h, s, T) = \frac{T^4}{2\pi^2} \left[\sum_B n_B J_B \left(\frac{m_B^2(h, S)}{T^2} \right) + \sum_F n_F J_F \left(\frac{m_F^2(h, S)}{T^2} \right) \right] + \text{Daisy resummation}$$

The Z₂ spontaneous breaking scenario

Motivated by dark symmetry breaking models^[Carena et al, 1911.10206]

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4 + \frac{a_2}{4}h^2S^2 + \frac{b_2}{2}S^2 + \frac{b_4}{4}S^4$$

A complete one-loop level analysis

$$V_{\rm CW} = \frac{1}{64\pi^2} \left(\sum_B n_B m_B^4(h, S) \left[\ln \frac{m_B^2(h, S)}{Q^2} - c_B \right] - \sum_F n_F m_F^4(h, S) \left[\ln \frac{m_F^2(h, S)}{Q^2} - \frac{3}{2} \right] \right)$$
$$V^T(h, s, T) = \frac{T^4}{2\pi^2} \left[\sum_B n_B J_B \left(\frac{m_B^2(h, S)}{T^2} \right) + \sum_F n_F J_F \left(\frac{m_F^2(h, S)}{T^2} \right) \right] + \text{Daisy resummation}$$

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

The Z₂ spontaneous breaking scenario

Correlation between exotic decay and EWPT [Carena et al, 1911.10206]

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

A short summary

Three strong 1st-order electroweak phase transition scenarios:

- 1. General Higgs + singlet; [Kozaczuk *et al*, 1911.10210]
- 2. Singlet Z₂-preserving ^[Kozaczuk et al, 1911.10210] & spontaneous breaking^[Carena et al, 1911.10206]

All show the correlation between EWPT and Higgs exotic decay!!

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

Searching for Higgs to double-singlet exotic decay

If *S* decays invisibly: Br(*h* > invisible) Current LHC bound < 14.5%;^[2202.07953] future HL-LHC 2.5%;^[1902.00134] CEPC 0.27%.^[1905.03764]

10^{0} ATLAS bbbb 36.1 fb [Gershtein et al, 2012.07864] ATLAS bbbb 36.1 fb⁻¹ 10^{-1} **TLAS** γγii 36.7 fb⁻ 10^{0} CMS $bb\tau\tau$ 35.9 fb⁻¹ Br(h→ss→XXYY 10^{-2} CMS ττττ 35.9 fb⁻ $Branching ratio \\ 10^{-1} \\ 10^{-2}$ $\tau^+ \tau^-$ CMS bbµµ 35.9 fb⁻ 10^{-3} MS μμττ 35.9 fb⁻¹ CMS μμττ 35.9 fb gg 10^{-2} ATLAS bbuu 139 fb CMS WW 10^{-5} 2π 10^{-3} ATLAS uuun 139 fb 10^{-6} **СМЅ µµµµ** 137 fb[·] 10^{-2} 0.52.0 1.0 10^{-4} 10^{-1} 10^{-7} 10^{0} 10^{1} 10^{2} m_S (GeV) 20 60 40 0 m_S [GeV]

If *S* decays visibly: Br(*h* > *SS* > *XXYY*)

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

Probing EWPT with Higgs exotic decay

h > *SS* > *XXYY* as a probe [assuming *S* decays via *h*-*S* mixing]

Recently: probing 1st-order EWPT via long-lived particle searches for h > SS > jjjj at CMS, MAPP^[Liu et al, 2205.08205]

Ke-Pan Xie (谢柯盼), U of Nebraska-Lincoln

Conclusion

New physics might be hidden at lower energy scale...

Origin of a strong 1st-order EWPT?

Highly correlated with Higgs exotic decay, especially *h* > *SS* > *XXYY*

Conclusion

New physics might be hidden at lower energy scale...

Origin of a strong 1st-order EWPT?

Highly correlated with Higgs exotic decay, especially h > SS > XXYYMight be revealed at ...

Other hopeful channels

μμjj, ττjj, μμττ...

Thank you!

Backup: implications of first-order phase transitions

Matter-antimatter asymmetry 2011.04821, 2005.13552, 1206.2942, hep-ph/9410282, 9408339, etc

Dark matter/primordial black holes 2201.07243, 2106.05637, 2106.00111,

2105.07481, 2008.04430, 1912.02830, etc

Gravitational wave signals 2204.05434, 2008.10332, 1807.09495, 1512.02076, 1512.06239, 1910.13125, etc