Joint Workshop of the CEPC 2022

Exploring Fermionic Multiplet Dark Matter through Precision Measurements at the CEPC

Linqing Gao (高林青) Institute of High Energy Physics, CAS

collaborators:

Pengfei Yin, Xiaojun Bi, Jinwei Wang, Qianfei Xiang

Based on

arXiv:2112.02519

1

2022.05.25@IHEP Online

1 Introduction

Precision estimation of cross section

singlet-doublet fermionic DM model (SDFDM model)

constraints at the CEPC

doublet-triplet fermionic DM model (DTFDM model) and constraints

Dark matter (DM) makes up most of the matter component in the Universe, as suggested by astrophysical and cosmological observations

WIMPs is a very attractive class of DM candidates, as it can satisfy DM relic density naturally and it is easy to detect.

Two fermionic multiplets Dark Matter **Models** are considered: SDFDM: 1 singlet + 2 doublet Weyl spinors DTFDM: 2 doublet + 1 triplet Weyl spinors

LHC: large backgrounds and the large theoretical/systematical uncertainties CEPC: free of the QCD background **CEPC is suitable for precision measurements**

CEPC -> precision measurements -> **SDFDM** and **DTFDM**

the Circular Electron Positron Collider (CEPC)

The goal of CEPC is precision measurements of Higgs coupling and EW observable. The CEPC also offers excellent opportunities for searching new physics

Operation	\sqrt{s}	L per IP	Years	Total $\int L$	Event	
mode	(GeV)	$(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$		(ab ⁻¹ , 2 IPs)	yields	
Н	240	3	7	5.6	1×10^{6}	
Z	91.2	32	2	16	7×10^{11}	arXiv: 1811.10545
W^+W^-	158-172	10	1	2.6	2×10^{7}	

CEPC can be upgraded to $\sqrt{s} = 360 \text{ GeV}$, enabling the tt⁻ pair production

Focus Higgs factory mode in this work

Precision estimation of cross section

Process	Cross section (pb)	Events in 5.6 ab ⁻¹	precision	-
$e^+e^- ightarrow \mu^+\mu^-$	1.8	10 ⁷	0.1%	
$e^+e^- \rightarrow Zh$	0.196	1.1×10^6 0.5% Dong 等 (20) arXiv: 1811 10545
$e^+e^- \to W^+W^-$	16.7	9.4×10^{7}	0.1%	1011110010
$e^+e^- \rightarrow ZZ$	1.1	6.2×10^{6}	0.12%	
$e^+e^- \rightarrow Z\gamma$	9.03	5.1×10^{7}	0.1%	_

Total = Sqrt (statistical^2 + systematic^2)

systematic error :

total luminosity: 0.1%

arXiv: 1811.10545

W+W-, ZZ process: ignore hadron decay

Conservative estimation :

all process: 0.5%

singlet-doublet fermionic DM model (SDFDM model)

The dark sector contains Weyl spinors S and D_i (i = 1, 2) obeying SU(2)_L x U(1)_Y

$$S \in (1,0), \quad D_1 = \begin{pmatrix} D_1^0 \\ D_1^- \end{pmatrix} \in (2,-1), \quad D_2 = \begin{pmatrix} D_2^+ \\ D_2^0 \end{pmatrix} \in (2,1)$$

The gauge invariant Lagrangians

$$\begin{split} \mathcal{L}_{S} &= iS^{+}\bar{\sigma^{\mu}}D_{\mu}S - \frac{1}{2}(m_{s}S^{T}(-\epsilon)S + h.c.), \\ \mathcal{L}_{D} &= iD_{1}^{+}\bar{\sigma^{\mu}}D_{\mu}D_{1} + iD_{2}^{+}\bar{\sigma^{\mu}}D_{\mu}D_{2} + (m_{D}D_{1}^{iT}(-\epsilon)D_{2}^{j} + h.c.), \\ \mathcal{L}_{Y} &= y_{1}SD_{1}^{i}H_{i} - y_{2}SD_{2}^{i}\tilde{H}_{i} + h.c., \end{split}$$

Four free parameters : m_S, m_Q, y₁, y₂

singlet-doublet fermionic DM model (SDFDM model)

After EWSB, S and D_i (i = 1, 2) will mix, mass term can be written

$$\begin{split} \mathcal{L}_{m} &= -\frac{1}{2} (S, D_{1}^{0}, D_{2}^{0}) M_{n}(-\epsilon) \begin{pmatrix} S \\ D_{1}^{0} \\ D_{2}^{0} \end{pmatrix} - M_{D} D_{1}^{-}(-\epsilon) D_{2}^{+} + h.c. \\ &= -\frac{1}{2} m_{\chi_{i}^{0}} \sum \chi_{i}^{0} (-\epsilon) \chi_{i}^{0} - m_{\chi^{\pm}} \chi^{-}(-\epsilon) \chi^{+} + h.c., \\ M_{n} &= \begin{pmatrix} M_{S} & \frac{1}{\sqrt{2}} y_{1} v & \frac{1}{\sqrt{2}} y_{2} v \\ \frac{1}{\sqrt{2}} y_{1} v & 0 & -M_{D} \\ \frac{1}{\sqrt{2}} y_{2} v & -M_{D} & 0 \end{pmatrix} \qquad \begin{pmatrix} S \\ D_{1}^{0} \\ D_{2}^{0} \end{pmatrix} = \mathcal{N} \begin{pmatrix} \chi_{1}^{0} \\ \chi_{2}^{0} \\ \chi_{3}^{0} \end{pmatrix} \end{split}$$

mass order: $\chi_1^0 < \chi_2^0 < \chi_3^0$ mass composition m_s>m_D: χ_1^0 , χ_2^0 doublet, χ_3^0 singlet m_s<m_D: χ_1^0 singlet, χ_2^0 和 χ_3^0 doublet

In mass eigenstates , there is one charged particle χ^{\pm} and three neutral particles χ_i^0 (i = 1,2,3) If consider Z₂ symmetry , χ_1^0 can be DM candidate

feynman diagrams of new sector

8

7 Constraints

Contribution of new sector to the Cross Section

Color region : excluded by CEPC Dot dashed line :

precision~0.5% excluded

- 1. structure of diagrams is complex
 - -> mass and coupling of particles and mass threshold

 $e^+ e^- \rightarrow \mu^+ \mu^-$ as an example

2. Constraints of five processes complementary -> combined results

$e^+ e^- \rightarrow \mu^+ \mu^-$ analysis

2. mainly dependent on m_D

m_S (GeV)

combined constraints

In mass plane, Yukawa coupling : $y_1=1.0$, $y_2=0.5$

$$\chi^2 = \sum_i \frac{(\mu_i^{\rm NP} - \mu_i^{\rm obs})^2}{\sigma_{\mu_i}^2} \simeq \sum_i \frac{(\Delta \sigma / \sigma_0)^2}{\sigma_{\mu_i}^2}$$

2 degree 95% : χ^2 =5.99

Yellow region : exlusion region at 95% C. L. **solid black lines:** exlusion region (precision ~0.5%) **color lines** : mass of χ_1^0

Detection capability of LEP、LHC and CEPC

LEP : constraints on charged particle -> dashed black line **LHC** : monojet+missE ->mass of χ_1^0 is less than ~100 GeV

combined constraints in Yukawa plane

In Yukawa coupling plane

$$\frac{\Delta\sigma}{\sigma_0} = \frac{\mid \sigma_{\rm SDFDM} - \sigma_{\rm SM} \mid}{\sigma_{\rm SM}}$$

mass composition m_s>m_D: χ_1^0 , χ_2^0 doublet, χ_3^0 singlet m_s<m_D: χ_1^0 singlet, χ_2^0 和 χ_3^0 doublet

2.0

 $M_{S} = 100 \text{ GeV}, M_{D} = 400 \text{ GeV}$ $M_{S} = 400 \text{ GeV}, M_{D} = 200 \text{ GeV}$

Yellow region : exlusion region **solid black lines** : exlusion region(~0.5%) **color lines** : mass of χ_1^0

LEP : no constraints, $(\chi^{\pm}=M_D < 103 \text{ GeV})$ **LHC** : monojet+missE -> mass of χ_1^0 is less than ~100 GeV

DM relic density and direct detection (DM candidate χ_1^0)

(a) $y_1 = 1.0, y_2 = 0.5$

blue region : DM relic density , $\Omega h^2 > 0.12$ Planck2018 **yellow liens** : spin-independent , $h\chi_1^0\chi_1^0$ PandaX-4T **purple lines** : spin-dependent , $Z\chi_1^0\chi_1^0$ PlCO-60

12 DTFDM model

doublet-triplet fermionic DM model (DTFDM model)

The dark sector contains Weyl spinors S and D $_i$ (i = 1, 2) obeying SU(2) $_L$ x U(1) $_Y$

$$T = \begin{pmatrix} T^+ \\ T^0 \\ -T^- \end{pmatrix} \in (\mathbf{3}, 0), \qquad D_1 = \begin{pmatrix} D_1^0 \\ D_1^- \\ D_1^- \end{pmatrix} \in (\mathbf{2}, -1), \qquad D_2 = \begin{pmatrix} D_2^+ \\ D_2^0 \\ D_2^0 \end{pmatrix} \in (\mathbf{2}, 1)$$

The gauge invariant Lagrangians

$$\begin{split} \mathcal{L}_{T} &= iT^{+}\bar{\sigma^{\mu}}D_{\mu}T - \frac{1}{2}(m_{T}T^{T}(-\epsilon)T + h.c.), \\ \mathcal{L}_{D} &= iD_{1}^{+}\bar{\sigma^{\mu}}D_{\mu}D_{1} + iD_{2}^{+}\bar{\sigma^{\mu}}D_{\mu}D_{2} + (m_{D}D_{1}^{iT}(-\epsilon)D_{2}^{j} + h.c.), \\ \mathcal{L}_{Y} &= y_{1}TD_{1}^{i}H_{i} - y_{2}TD_{2}^{i}\tilde{H}_{i} + h.c., \end{split}$$

Four free parameters : m_S , m_Q , y_1 , y_2

In mass eigenstates , there are two charged particle χ_i^{\pm} (i = 1,2)and three neutral particles χ_i^0 (i = 1,2,3)If consider Z₂ symmetry , χ_1^0 can be DM candidate

combined constraints

2. red loop region

15

DM relic density and direct detection (DM candidate χ_1^0)

blue region : DM relic density , $\Omega h^2 > 0.12$ **yellow region** : spin-independent , $h\chi_1^0\chi_1^0$ **purple region** : spin-dependent , $Z\chi_1^0\chi_1^0$

difference with SDFDM model : 1. constraints of direct detection is same 2. constraints of relic density is weak

1. We study two EW multiplet fermionic dark matter models through precision measurements at CEPC.

2. We focus on five processes: $e^+ e^- \rightarrow \mu^+ \mu^-$, Zh, W+W-, ZZ, Z γ . Precision of these processes are estimated as 0.1%, 0.5%, 0.1%, 0.12%, 0.1%, respectively. Moreover, we give a conservative precison 0.5%

We find the detectablity of CEPC would be complementary to LEP, LHC, DM relic density and direct detection in some parameter regions.

