Particle Flow Oriented Detector for future Higgs factories: status & progresses

incomplete and biased: apologies

many talks from the real experts later in this workshop

Institute of Particle and Nuclear Studies

Daniel Jeans, KEK / IPNS

2022/5/23

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022

some history:

"Particle Flow" detectors developed mostly from LEP experiments

several discussions at Snowmass 2001

https://www.slac.stanford.edu/econf/C010630/proceedings.shtml

Jet Energy Resolution: "LEP-like" ~ 60%/sqrt(E)

30%/sqrt(E)

electron – positron collider

 $\rightarrow\,$ can and must make full use of QCD final states, which dominate decays of W, Z, H

jet energy resolution is key

hadronic jets from fragmentation of quarks & gluons

energy carried on average by charged hadrons ~65% photons ~25% neutral hadrons ~10%

charged hadrons
→ tracking detector
 dp_/p_t ~ few x 10⁻⁵ p_t

photons

→ sampling ECAL dE/E ~ 10-20% / sqrt(E)

neutral hadrons

→ sampling HCAL dE/E ~ 50% / sqrt(E)

- *individually* measure each particle in calorimeters
- if charged: replace calo with tracker measurement

"Energy Flow" vs. "Particle Flow"

10 GeV charged + (25-10=)15 GeV neutral

subtract tracker measurement from calo

"Energy Flow" vs. "Particle Flow"

tracker

10 GeV charged + 13 GeV neutral

replace calo measurement with tracker

Key Points for Particle Flow: * calorimeter granularity * little material before CAL

10 GeV

(virtual) implementations of Particle Flow detectors

the most striking difference may be the colour of the paint used for the solenoid yoke

8

E_{jet} [GeV]

Vertex Detector

identification of medium lifetime particles B/D/tau

a few few-micron-precision points starting as close to IP as possible → detector backgrounds, eg beamstrahlung

transparency to minimize multiple scattering \rightarrow low-power ; support ; interfaces

many potential technologies: CMOS, SOI, FPCCD, DEPFET

Fine Pixel CCD

Inspiration from "outside"

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021

Tracking detector

- → Higgs-strahlung defines upper useful limit for momentum resolution
- \rightarrow accelerator & detector contributions to recoil mass resolution

tracking detector typical layout

magnetic spectrometer with relatively strong B-field

low mass tracker \rightarrow resolution @ low momentum

silicon detector layers: provide some very precise points

possibly complemented by a gaseous detector

- \rightarrow pattern recognition
- \rightarrow particle ID (dE/dx, dN/dx)

Time Projection Chamber

e.g. for ILD concept @ ILC

three main readout technologies under study in LC-TPC collaboration

gating GEM to block amplification ions

Three Baseline Technologies

- <u>GEMs:</u> copper-insulator- copper sandwich, with holes
- 2 configurations are being tested:
- triple GEMs with 'standard CERN GEMs'
- double GEMs with 100 μ m LCP insulator

Resistive Micromegas: Bulk-Micromegas

with 128 μm gap size between mesh and resistive layer

- 55µm pitch of readout pixels

UNIVERSITÄT

- resistive layer needed for protection of ASIC

applicable at high rate colliders, e.g. Z-pole running ? 13

J. Kaminski ILD strategy discussion

14

charged particle identification ~ distinguishing charged hadrons

ionization \rightarrow dE/dx or dN/dx

in a gaseous tracker: cover momenta up to ~10s of GeV

timing layer(s) before or in calorimeter e.g. Low Gain Avalanche Diodes \rightarrow very active development \rightarrow 10 ps

large flight distance → outside tracker volume typically power-hungry readout → reduce granularity ? cables, cooling → keep outside "transparent" tracker

 \rightarrow incorporate into ECAL readout ?

V. Cairo

Comparable dE/dx performance at e.g. 20 GeV, boost from dN/dx

2203.07535

Extending PID capabilities

- TOF or dE/dX have great PID capabilities, but cover only the low momentum regime (unless very large tracker volumes are used)
- Ring Imaging Cherenkov Detectors (RICH) are a favourable option at higher momentum

sizable volume between tracker and calorimeters ?

trk – calo linking essential for PFA

can PFA perfomance be preserved ?

V. Cairo

Silicon-W ECAL

20~30 layer sampling calorimeter

Moliere radius <2 cm

segmentation ~ 5 mm

power-pulsing at linear colliders turn off front-end between collisions

 \rightarrow reduce power/cooling

Before application of epoxy After application of epoxy

compact electronics & cabling May 17, 2022

The SiD Digital ECal based on Monolithic Active Pixel Sensors

Jim Brau, University of Oregon

Main specifications for Large Area MAPS development

				JLAC
Parameter	Value	Notes		
Min Threshold	140 e-	0.25*MIP with 10 µm thick epi layer		25 x 100 µm ²
Spatial resolution	7 µm	In bend plane, based on SiD tracker specs	→	ECal performance same as
Pixel size	25 x 100 µm ²	Optimized for tracking		50 x 50 µm²
Chip size	10 x 10 cm ²	Requires stitching on 4 sides		
Chip thickness	300 µm	<200 µm for tracker. Could be 300 µm for EMCal to improve yield.		*
Timing resolution (pixel)	~ ns	Bunch spacing: C^3 strictest with 5.3->3.5 ns; ILC is 554 ns		Ecal
Total lonizing Dose	100 kRads	Total lifetime dose, not a concern		Tracker
Hit density / train	1000 hits / cm ²			

J. Brau

large AHCAL prototype

scintillator tile + SiPM well-established technology

extensive beam tests in 2018

combined ECAL+HCAL test beams next month

Megatile concept

Megatile status and test-beam analysis

CALICE \rightarrow CMS HGCAL \rightarrow e+e- collider detector

Design of the very forward region

Forward region of an e⁺e⁻ collider detector

- Small Moliere radius
- High granularity

- LumiCal for precise luminosity measurement (Counting Bhabhas)
- BeamCal for fast luminosity Measurement (using beamstrahlung)
- Both for large polar angle coverage (important for new particle searches)
- Technology choice: Si or GaAs/W sandwich calorimeters
- 1 X₀ absorber thickness, 20 (30) layers in ILC (CLIC)

layout depends on accelerator's MDI; final focus system

Summary

Particle Flow approach can provide the performance needed at an e+ e- Higgs (+top+Z+W+...) Factory collider

high granularity calorimetry is the most distinctive feature: R&D is very well advanced, being implemented in CMS HGCAL

many technologies are being developed, both within and outside our e+e- communities, which will be of use for such a detector and its subsystems