PID with Cluster Counting for the CEPC Drift Chamber

Guang Zhao (on behalf of the DC-PID working group) zhaog@ihep.ac.cn

Joint Workshop of Physics, Software and New Detector Concept May 24th, 2022

The 4th conceptual detector

Physics requirements: hadron momenta

- Most hadrons from Higgs/Z pole data are below 20 GeV/c
- The drift chamber should have sufficient PID separation power for hadrons < 20 GeV/c</p>

Ionization measurement with cluster counting

✓ Cluster counting: Measure # of clusters per length (dN/dx)
 ✓ Clean in statistics: P(N
_p, k) = <sup>N
p/{k!} e<sup>-N
p</sup>/{k!} e<sup>-N
_p</sup>
 ✓ Theoretical resolution: ¹/_{√Np} = ¹/_{√Pcl×L} (potentially a factor > 2 better than dE/dx)
</sup>

Better K/ π separation with dN/dx (MC truth)

Waveform-based simulation

Noise ratio

30 -

0

Waveform

MC, NR = 2%

Note: noise ratio in beam-test data is close to ~10%

Time (ns)

Peak finding algorithm

Base on 1st and 2nd order derivatives

- Fast and efficient
- Good pile-up recovery ability on the rising edge

Detector optimization: figure of merit

PID performance is in a higher priority

Parameters in simulation:

- Track direction: $\cos \theta = 90^{\circ}$
- Impact parameter of track w.r.t. sense wire: 0.2 cm

Gas mixture

Gas mixtures can affect several properties:

- Cluster density (ρ_{cl}): small $\rho_{cl} \rightarrow$ less statistics, large time separation
- Drift velocity (v_d) : slow $v_d \rightarrow$ large time separation
- Longitudinal diffusion (σ_d): small $\sigma_d \rightarrow$ less likely double-counting

Gas gain

....

Gas mixture choice: He + C₄H₁₀

K/ π separation for gas mixtures

- He 90% + iC_4H_{10} 10% has better K/pi separation for high momentum
- He 80% + iC₄H₁₀ 20% has better K/pi separation for low momentum
- PID in low momentum region can be covered by timing detector → He 90% is favored

Cell size

- In principle, only the total track length affects the PID, not the granularity
- However, the cell size has impact on the tracking and engineering

- Larger cell size, less material \rightarrow less multi-scattering \rightarrow better $\sigma(p_T)/p_T$ at low p_T
- Larger cell \rightarrow less wire tension \rightarrow easy engineering
- Large cell is favored

K/ π separation for cell sizes

K/ π separation power (L = 1m, NR = 0.02)

Cell size cannot affect PID significantly. Cell size = 18 x 18 mm is preferred

K/ π separation @ 20 GeV/c for track lengths

- The track length could be < 100 cm for a 2σ K/ π separation @ 20 GeV/c
- The requirement of separation power needs further studies with physics channels

Drift chamber design with mechanical structures

DC Parameters					
R extension	800-1800mm				
Length of outermost wires $(\cos\theta=0.82)$	5143mm				
Thickness of inner CF cylinder	200µm				
Outer CF frame structure	Equivalent CF thickness: 1.63mm				
Thickness of end Al plate	35mm				
Cell size	18 mm × 18 mm				
Diameter of field wire (Al coated with Au)	60µm				
Diameter of sense wire (W coated with Au)	20µm				
Ratio of field wires to sense wires	3:1				
Gas mixture	He/iC4H10=90:10				

Total tension: ~9200 kg
 ✓ Meet requirements of stability condition:

Т

$$V > (\frac{VLC}{d})^2/(4\pi\varepsilon_0)$$

Preliminary stability study

Finite element model——wire tension + weight loads (supported by eight blocks at each endplate)

Mises stress: 70MPa Principal stress : 33MPa Deformation: 0.8mm Buckling coefficient: 17.2, it is safe

The support structure is stable, and the deformation is acceptable

Summary

- Simulation gives us the suggested parameters of DC:
 - <u>Gas mixtures:</u> 90% He + 10% C₄H₁₀
 - Thickness of DC: < 100 cm (2σ K/ π separation @ 20 GeV/c)
 - <u>Cell size:</u> 1.8 cm x 1.8 cm
- A mechanical design including the support structures is provided
 - Preliminary infinite element analysis shows good mechanical stability

 p_T resolution @ low p_T is even better than full Si design

DC Parameters				
R extension	800-1800mm			
Length of outermost wires $(\cos\theta=0.82)$	5143mm			
Thickness of inner CF cylinder	200µm			
Outer CF frame structure	Equivalent CF thickness: 1.63mm			
Thickness of end Al plate	35mm			
Cell size	18 mm × 18 mm			
Diameter of field wire (Al coated with Au)	60µm			
Diameter of sense wire (W coated with Au)	20µm			
Ratio of field wires to sense wires	3:1			
Gas mixture	He/iC4H10=90:10			

Outlook

Study the PID requirement from physics channels

- Physics input to constrain the detector parameters
- Delphes fast simulation is ongoing

More effective peak finding algorithm

 An algorithm using deep learning is being developed. Preliminary study shows promising results

Delphes

Backup

Field and gain

Property for more gas mixtures

Tracker parameters

Gang Li's talk: https://indico.ihep.ac.cn/event/16011/session/2/contribution/12/material/slides/0.pdf

Layers	Radius(mm)	$\sigma_{R\phi}(\mathrm{mu})$	$\sigma_Z(\mathrm{mu})$	Thickness $(1\%/X_0)$
Beam Pipe	14.5	-	-	0.15
VTX	16/18/37/39/58/60	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.15
VTX-shell	65.0	-	-	0.15
SITs	80/253/600	7.2/7.2/7.2	86.6/86.6/86.6	0.65
DC inner shell	798	-	-	0.104
DC wires (20*20mm) and gas	800 1800	100	2828	0.0108+0.0031
DC outer shell	1803.0	-	-	1.346
SET (HV-CMOS 25x300 μm ²)	1811.0	11.5	138.5	0.65

K/ π separation with more noise levels

K/ π separation for proton

Receiver Operating Characteristic (ROC)

NN is a better binary classifier than the derivative method

Note: ROC curve is a standard tool for evaluation binary classifiers. ROC curve with larger areaunder-curve (AUC) is better