PID with Gaseous Tracking and Timing in ILD

Ulrich Einhaus, <u>Bohdan Dudar</u> (bohdan.dudar@desy.de) Joint Workshop of the CEPC Physics, Software and New Detector Concept 24 May 2022

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Particle Identification in ILD

dE/dx reconstruction inside TPC

TPC in the ILD Geant4 simulation: Gas: Ar-CH₄-CO₂ mixture (93%/5%/2%) Segmentation: 220 radial hits with a 6 mm step

<u>Compute dEdxProcessor</u>

1. Calculates dE/dx per hit

(dE)	_
l	$\overline{\mathrm{dx}}$	Jhit	-

 $= \frac{\text{sum(gas ionisation from Geant4)}}{\text{distance to the previous hit}}$

2. Calculates truncated mean <dE/dx> per track

take all hits associated with a track $< \frac{dE}{dx} >_{track} =$ reject 30% hits with the highest dE/dx reject 8% hits with the lowest dE/dx

3. Smears <dE/dx>_{track} to match LCTPC test beam results

https://arxiv.org/abs/1801.04499

note¹: currently, not all track hits are used, but only hits from the first half circle note²: smearing accounts for N_{hits} and θ_{track} correlations note³: for overlapping tracks hits are merged

courtesy of Ulrich Einhaus

dE/dx (GeV/mm)

DESY

dE/dx particle ID performance examples

dE/dx resolution <u>does not degrade</u> in a dense jet environment

Smaller TPC radius <u>negatively impacts</u> dE/dx separation power

courtesy of Ulrich Einhaus

dE/dx validation with a test beam data

We transited to a newer Geant4 version for the ILD 2020 MC production

- The effective resolution was overestimated in the past. Now it is substantially more realistic
- Now smearing factor has to be smaller to match test beam data.
- Calibration parameters were re-adjusted

A separate detailed simulation using MarlinTPC has been made to study pad granularity effects on dE/dx resolution

- Current full ILD reconstruction: 6 mm pads $\rightarrow \sim 4.6 \%$ dE/dx resolution
- 6 mm \rightarrow 1 mm: 15% improved resolution via charge summation (dE/dx)
- 6 mm \rightarrow 0.1 mm: 30% improved resolution via cluster counting (dN/dx)

<u>We can achieve a better dE/dx resolution</u> than currently implemented in the simulation

Yet, it is not trivial to implement small granularity inside simulation

Changing granularity might stop working at very low pad sizes, due to a very distorted pad geometry.

Time of Flight particle ID

TOFEstimators and **TrackLength** processors

Calculate track length and harmonic mean of squared momentum during Kalman Filter fit procedure hit-by-hit

$$\ell_{\text{track}} = \sum_{i=0}^{n} \ell_{i} = \sum_{i=0}^{n} \sqrt{\left(\frac{\varphi_{i+1} - \varphi_{i}}{\Omega_{i}}\right)^{2} + (z_{i+1} - z_{i})^{2}}$$
$$p = \sqrt{\langle p^{2} \rangle_{HM}} = \sqrt{\sum_{i=0}^{n} \ell_{i} / \sum_{i=0}^{n} \frac{\ell_{i}}{p_{i}^{2}}}$$
$$rorg/abs/2107.02031$$

https://arxiv.org/abs/2107.02031

Use closest ECAL hit to the track to calculate TOF and then smear it with σ to simulate effective TOF resolution (per particle!)

$$\text{TOF} = \text{RandGauss}(t_{\text{hit}} - \frac{|\vec{r}_{hit} - \vec{r}_{track}|}{c}, \sigma)$$

Reconstruct mass of a particle, using p, l_{track} , TOF

$$m = \frac{p}{\beta}\sqrt{1-\beta^2} \qquad \qquad \beta = \frac{\ell_{\text{track}}}{c \cdot \text{TOF}}$$

note¹: current Si sensor developments show 20 – 100 ps time resolution (per hit!) is possible to achieve note²: event time always assumed $t_0=0$. It is always can be absorbed in the effective TOF resolution note³: fast timing sensors can be placed in the inner-most ECAL layers or as an additional outer Si tracker layer

International Large Detector

My latest in-depth talk on TOF

TOF particle ID performance

only barrel / 30 ps TOF resolution / ($Z \rightarrow qq 250 \text{ GeV}$)

note¹: using m(p) shows better results than $\beta(p)$ because slice distribution is more Gaussian (back up)

Impact of the track length on time of flight particle ID

Track length hit-by-hit gives huge improvement in the endcap compared to the helix approximation

Track length hit-by-hit gives mild improvement in the barel compared to the helix approximation

note¹: these plots assume perfect TOF resolution

Separation power versus TOF resolution

DESY.

Potential technological implementation of time of flight measurement

- → 1 ECAL timing layer with cutting-edge 30 ps hit time resolution (e.g. LGAD)
- → 2 Si strips (e.g. between TPC and Ecal) with moderate 50 ps hit time resolution
- → 10 ECal timing laters with decent 100 ps hit time resolution

All result in roughly ~30 ps final TOF resolution.

V0 finder

<u>V0 finder</u>

Cut-based processor, checks all track combinations:

- To be consistent with a common non-IP vertex
- To actually be a prong of that vertex
- To have an invariant mass consistent with the V₀ hypothesis

Requires min. distance to IP to not interfere with later vertexing (LCFIPlus)

Most common V₀s:

- $K^0_{\ S} \to \pi^+\pi^-$ (69%)
- $\Lambda^0 \rightarrow p^+ \pi^-$ (64%)
- $\gamma \to e^+e^-$

Written as a separate collection and the PID is attached to PFOs

International Large Detector

V₀ finder performance

Basic assessment of efficiency, depending on momentum and radial cut shows room for improvement

Summary and Future plans

- Many active developments have happened over the recent years (despite Covid) showing a great TPC particle ID capabilities
- dE/dx PID is already very robust, but still has a room to improve resolution beyond current 4.6%
- TOF PID is very recent and develops very fast, showing excellent PID below 5 GeV complementing dE/dx in a dip

Still many things are planned and ongoing:

- Make fully robust likelihood PID processor: dE/dx+TOF+shower shapes+etc.
- Simulate realistic digitizer in the ECAL for TOF measurement, not only earliest MC contribution, but full threshold behaviour.
- Explicitly show TOF particle ID benefits for physics analyses
- Full assessment of V₀ finder and its relation to LCFIPlus vertexing/V₀s planned for this year

International Large Detector

Back up

Back up

