Status of CEPC Software Framework

Teng Li

on behalf of the CEPC software framework working group 2022.5.25

Outline

- Introduction
- Overview of CEPCSW
- CEPCSW core components
- Progress and plans
- Summary

Key4hep

HEP software usually consist of lots of applications

- Application layer of modules / algorithms /processors performing physics task (*PandoraPFA, FastJet, ACTS,...*)
- Data access and representation layer including EDM
- Experiment core orchestration layer (*Gaudi, Marlin, ...*)
- Specific components reused by many experiments (*DD4hep, Delphes, Pythia,...*)
- Commonly used HEP core libraries (*ROOT, Geant4, CLHEP, ...*)
- Commonly used tools and libraries (*Python, CMake, boost, ...*)
- Turnkey software for future colliders
 - An agreement at Future Collider Software Workshop (Bologna, June 2019)
 - Software components sharing between different experiments
 - CPEC, CLIC, FCC, ILC, STCF

Thomas Madlener, Epiphany Conference 2021

Status of Key4hep

- https://github.com/key4hep
- Main ingredients
 - Event Data Model: EDM4hep, based on LCIO and FCC-EDM; podio
 - Geometry Information: DD4hep
 - Framework: Gaudi
 - Packaging and deployment: Spack
- Key4hep is under rapid development

André Sailer, etc. , CHEP2021

k4FWCore	EDM4hep	key4hep-doc	key4hep-spack	EDM4hep-utils
k4MarlinWrapper	k4Clue	k4LCIOReader	k4SimDelphes	k4Analysis
k4EDM4hep2L cioConv	key4hep- validation	k4ActsTracking	key4DCMTSim	k4Pandora

Weekly meetings: https://indico.cern.ch/category/11461

CEPCSW

- Based on Key4HEP
- Reuse existing components
 - Gaudi, EDM4hep, DD4hep, ...
- Implement the specific components for CEPC
 - Geometry, generator, simulation and reconstruction algorithms, etc.
- Provide ready-to-work environment to algorithm developers and physicists
 - Porting algorithms from iLCSoft to CEPCSW
 - Integrate/develop more algorithms and features

https://github.com/cepc/CEPCSW

Data Processing Framework: Gaudi

- Modular design and well defined component interfaces
- Three basic categories of data characterized by their lifetime
- Seperation of algorithm, transient and persistent data in the event loop

Geometry Description Toolkit: DD4hep

- DD4hep provides complete detector description in CEPCSW
 - Provides geometry, materials, visualization, readout, calibration...
- Single source of information to ensure consistent description
 - In simulation, reconstruction, analysis
- Supports full experiment life cycle
 - Detector concept development, detector optimization, construction, operation
 - Facile transition from one stage to the next
- See latest developments: https://github.com/AIDASoft/DD4hep

Common Event Data Model: EDM4hep

- EDM4hep is the common EDM that can be used by all communities in the Key4Hep project: ILC, CLIC, FCC-ee & FCC-hh, CEPC, ...
- Efficiently implemented, support multi-threading and potentially heterogeneous computing
- Use podio to generate thread safe code starting from yaml description

Recent Developments of EDM4hep and podio

- The support of <u>schema evolution</u> is being developed
 - A critical function to guarantee backward compatibility of data
- Support of podio::Frame
 - Act as a container that aggregates and owns all relevant data (collections and metadata)
- EDM4hep extensions under discussion
 - Split EDM4hep into a 'core EDM4hep' and a few extensions
- Other enhancements and improvements
 - Adding edm4hep::Quantity in Track to support dN/dx and dE/dx etc. <u>#137</u>
 - Support of fixed width variables <u>#186</u>
 - A lot more...

Simulation Framework (1)

- Hit-level background mixing
 - Event pre-mixing strategy is adopted to generate the simulated background data.
 - A GenTool called GtBeamBackgroundTool has been developed to simulate the beam background data.

Background data preparation:

Simulation Framework (2)

- Integration with ML based simulation
 - ONNX: Open Neural Network Exchange
 - Open standard for machine learning interoperability
 - Inference based on ONNX and ONNX runtime
 - ONNX Runtime:
 - Supporting Models from Tensorflow, PyTorch, scikit-learn, XGBoost…

Anna Zaborowska, AIDAInnova WP 12.3 Fast Simulation CERN contribution

Software Building and Management

- Common tools
 - CMake: Build & deployment
 - Gaudi cmake macros
 - Git: version control
 - https://github.com/cepc/cepcsw
 - A Gitlab mirror is planned
 - CVMFS: software distribution
 - CEPC specific: /cvmfs/cepcsw.ihep.ac.cn/prototype
- In current software release
 - Build by ourselves: Gaudi, k4FWCore, EDM4hep, GEAR, GenFit, podio, LCIO, k4LCIOReader, Pandora
 - Re-use the LCG software stack for other external libraries

Parallel Computing

- GaudiHive
 - A component in Gaudi now
 - Concurrency in event & alg level
- Work to be done in Key4HEP
 - Thread-safe I/O components
 - Other core services (DB, Geom …)
 - Performance testing and optimization
- Challenges
 - Thread-safe algorithms
 - Suitable job types

Heterogeneous Computing (1)

- Motivation
 - Computational accelerators are becoming increasingly prevalent.
 - LHC experiments, including ATLAS and CMS, launched heterogeneous computing projects a number of years ago.
 - With an abstract software layer, it can be achieved for one copy of source code to be run on different hardware devices.
- SYCL and DPC++
 - SYCL enables the definition of data parallel functions, which can be offloaded to CPU/GPU/FPGA devices, by providing required APIs and runtime libraries.
 - The oneAPI DPC++ is an extension on top of SYCL. So it can provide a unified programming model across multiple hardware architectures.

Heterogeneous Computing (2)

 Traccc is successfully built with DPC++ from Intel oneAPI and the Intel/IIvm compiler with CUDA extension.

Config	Hardware	OS	Compiler	SYCL backend	Bulid traccc	Run traccc
1	Intel CPU (IHEP login node)	CentOS 7.8	LCG 101 (GCC 10.3 + clang 12) + oneAPI DPC++	CPU	OK	OK
2	Intel CPU + NVIDIA RTX 8000 (workstation)	CentOS 7.9	LCG 101 (GCC 11.1) + intel/llvm (2021-12)	CUDA 11.2	OK	OK

The different devices could be used automatically with SYCL.

[lint@lxslc705]\$ export TRACCC_TEST_DATA_DIR=\$(pwd)/data

Heterogeneous Computing (3)

- Progress
 - With dpcpp and Intel LLVM, track seed finding software of ACTS was successfully compiled and run on CPU and GPU servers respectively.
 - The DPC++ code for track seed finding with pixel detector is being studied.
 - Collaboration with Intel (China) was established and zoom meetings were organized for technical discussions.
- Short-term plan
 - With the help of profiling tools, the performance of track seed finding will be studied on both Intel and NVIDIA GPUs.
 - The performance of EDM4hep/PODIO will also be investigated in the heterogeneous computing environment.
 - Implementation of asynchronous offloading in the framework

Development of Analysis toolkit based on RDataFrame

- RDataFrame became official part of ROOT since v6.14
 - Support declarative programming
 - allow users to write efficient physics analyses more easily
 - Fastest way to analyze data
 - supports local multi-threaded parallelization with TBB
 - also supports distributed data analysis with python+Spark without additional changes to the analysis code
 - Full support analysis in both Python and C++
 - Automatically generated Python bindings with PyROOT
 - Already support reading EDM4hep root files
 - Actively used by FCC-ee for flavour, higgs and top physics analysis

Development of Analysis tool based on RDataFrame

- Plan for development analysis tool for CEPC
 - Start from a inclusive analysis: Higgs recoil analysis and Higgs width measurement in e+e- -> Z(mumu)H process
 - <u>https://github.com/zeusmail/higgsrecoil</u> (from Gang Li)
 - Use CEPCSW to convert the LCIO data produced with Marlin to EDM4hep
 - Develop the common components (functions) for analyzing EDM4hep data (partly from <u>FCC-ee</u>)
 - Analysis function code in C++
 - event selection, filtering, vertexing, PID, Jet clustering, producing ROOT ntuples,...
 - Python for configuration
 - \circ define analysis functions, output variables, input samples, etc...
 - Testing the multi-threading performance

Automated Validation System

- An automated validation system is being developed for software validation at different levels
 - Unit test, integrated test, performance test, physical validation etc.
- A toolkit is developed for building software validation workflow
 - Provide interfaces to define and run unit tests
 - Support performance profiling
 - Support results validation based on statistical methods
- Automated physical validation system based on massive data production is being developed

Automated Validation System

- The validation system is being integrated with the Github Action system
 - Full validation workflow can be triggered by commit/merge-request
 - A web-based monitoring dashboard is also being developed
- \bullet ~ O(200) cores are now available for running validation jobs

Summary

- CEPCSW framework is being developed in collaboration with the Key4hep project
- Most CEPCSW core software components are in place and function well to support detector simulation and reconstruction studies
- Latest developments are focused on:
 - Parallel computing
 - Heterogeneous computing
 - RDataFrame based Analysis framework
 - Automated validation system

Welcomed to joining CEPCSW! We hope to work together with developers in the community. <u>https://github.com/cepc/cepcsw</u>

Backup

Data Input/Output

- The default EDM4hep data format: ROOT
- k4FWCore: the default data I/O components
 - PodioDataSvc: read/write podio data collections in ROOT
 - DataHandler: register data collections to Gaudi
- k4LCIOReader: read LCIO data generated by Marlin

