
Status of CEPC Software
Framework

Teng Li
on behalf of the CEPC software framework working group

2022.5.25

Outline

 Introduction

 Overview of CEPCSW

 CEPCSW core components

 Progress and plans

 Summary

2

Key4hep

 HEP software usually consist of lots of applications
 Application layer of modules / algorithms /processors

performing physics task (PandoraPFA, FastJet, ACTS,...)
 Data access and representation layer including EDM
 Experiment core orchestration layer

(Gaudi, Marlin, ...)
 Specific components reused by many experiments

(DD4hep, Delphes, Pythia,...)
 Commonly used HEP core libraries

(ROOT, Geant4, CLHEP, ...)
 Commonly used tools and libraries

(Python, CMake, boost, ...)

 Turnkey software for future colliders
 An agreement at Future Collider Software Workshop (Bologna, June 2019)

 Software components sharing between different experiments
 CPEC, CLIC, FCC, ILC, STCF 3

Thomas Madlener, Epiphany Conference 2021

Status of Key4hep

 https://github.com/key4hep

 Main ingredients
 Event Data Model: EDM4hep,

based on LCIO and FCC-EDM;
podio

 Geometry Information: DD4hep

 Framework: Gaudi

 Packaging and deployment: Spack

4

 Key4hep is under rapid development

 Weekly meetings: https://indico.cern.ch/category/11461

André Sailer, etc. , CHEP2021

k4FWCore EDM4hep key4hep-doc key4hep-spack EDM4hep-utils

k4MarlinWrapper k4Clue k4LCIOReader k4SimDelphes k4Analysis

k4EDM4hep2L
cioConv

key4hep-
validation k4ActsTracking key4DCMTSim k4Pandora

CEPCSW

 Based on Key4HEP

 Reuse existing components

 Gaudi, EDM4hep, DD4hep, ...

 Implement the specific components
for CEPC

 Geometry, generator, simulation and
reconstruction algorithms, etc.

 Provide ready-to-work environment to
algorithm developers and physicists

 Porting algorithms from iLCSoft to
CEPCSW

 Integrate/develop more algorithms and
features

5
https://github.com/cepc/CEPCSW

Data Processing Framework: Gaudi

 Modular design and well defined component interfaces

 Three basic categories of data characterized by their lifetime

 Seperation of algorithm, transient and persistent data in the
event loop

6

Geometry Description Toolkit: DD4hep

 DD4hep provides complete detector description in CEPCSW

 Provides geometry, materials, visualization, readout, calibration...

 Single source of information to ensure consistent description

 In simulation, reconstruction, analysis

 Supports full experiment life
cycle

 Detector concept development,
detector optimization, construction,
operation

 Facile transition from one stage
to the next

 See latest developments:
https://github.com/AIDASoft/DD4hep

7

Common Event Data Model: EDM4hep

 EDM4hep is the common EDM that can be used by all communities in the
Key4Hep project: ILC, CLIC, FCC-ee & FCC-hh, CEPC, ...

 Efficiently implemented, support multi-threading and potentially
heterogeneous computing

 Use podio to generate thread safe code starting from yaml description

8

Recent Developments of EDM4hep and podio

 The support of schema evolution is being developed

 A critical function to guarantee backward compatibility of data

 Support of podio::Frame

 Act as a container that aggregates and owns all relevant data
(collections and metadata)

 EDM4hep extensions under discussion
 Split EDM4hep into a 'core EDM4hep' and a few extensions

 Other enhancements and improvements

 Adding edm4hep::Quantity in Track to support dN/dx and dE/dx etc.
#137

 Support of fixed width variables #186

 A lot more...

9

Simulation Framework (1)

10

 Hit-level background mixing
 Event pre-mixing strategy is adopted to generate the

simulated background data.

 A GenTool called GtBeamBackgroundTool has been
developed to simulate the beam background data.

Beam
background
Generator

MC
Particles

Detector
Simulation MC Hits

Simulated
background
event data

Background data preparation:

Physics simulation and event mixing:

Physics
Generator

MC
Particles

Detector
Simulation MC Hits Event Mixing

Simulation Framework (2)

 Integration with ML based simulation
 ONNX: Open Neural Network Exchange

 Open standard for machine learning interoperability

 Inference based on ONNX and ONNX runtime

 ONNX Runtime:
 Supporting Models from Tensorflow, PyTorch, scikit-learn,

XGBoost…

11

Geant4
Simulation
Framework

FastSim
Model

Intermediate
Representation
(based on ONNX)

ML/DL
Model

G4FastStep

Anna Zaborowska, AIDAInnova WP 12.3 Fast Simulation CERN contribution

Software Building and Management

 Common tools

 CMake: Build & deployment
 Gaudi cmake macros

 Git: version control
 https://github.com/cepc/cepcsw
 A Gitlab mirror is planned

 CVMFS: software distribution
 CEPC specific: /cvmfs/cepcsw.ihep.ac.cn/prototype

 In current software release

 Build by ourselves: Gaudi, k4FWCore, EDM4hep, GEAR,
GenFit, podio, LCIO, k4LCIOReader, Pandora

 Re-use the LCG software stack for other external libraries

12

Parallel Computing

 GaudiHive

 A component in Gaudi now

 Concurrency in event & alg level

 Work to be done in Key4HEP

 Thread-safe I/O components

 Other core services (DB, Geom …)

 Performance testing and
optimization

 Challenges

 Thread-safe algorithms

 Suitable job types

13From: http://iopscience.iop.org/1742-6596/513/5/052028

Heterogeneous Computing (1)

 Motivation

 Computational accelerators are becoming increasingly prevalent.

 LHC experiments, including ATLAS and CMS, launched heterogeneous
computing projects a number of years ago.

 With an abstract software layer, it can be achieved for one copy of source
code to be run on different hardware devices.

14

 SYCL and DPC++

 SYCL enables the definition of data
parallel functions, which can be
offloaded to CPU/GPU/FPGA devices,
by providing required APIs and runtime
libraries.

 The oneAPI DPC++ is an extension on
top of SYCL. So it can provide a
unified programming model across
multiple hardware architectures.

Heterogeneous Computing (2)

 Traccc is successfully built with DPC++ from Intel oneAPI and the
Intel/llvm compiler with CUDA extension.

 The different devices could be used automatically with SYCL.

15

Config Hardware OS Compiler SYCL
backend

Bulid
traccc

Run
traccc

1 Intel CPU
(IHEP login node)

CentOS
7.8

LCG 101 (GCC 10.3 +
clang 12) + oneAPI
DPC++

CPU OK OK

2 Intel CPU +
NVIDIA RTX 8000
(workstation)

CentOS
7.9

LCG 101 (GCC 11.1) +
intel/llvm (2021-12)

CUDA 11.2 OK OK

Config 1: more than 1 CPUs are used. Config 2: NVIDIA GPU is used.

Heterogeneous Computing (3)

 Progress

 With dpcpp and Intel LLVM, track seed finding software of ACTS was
successfully compiled and run on CPU and GPU servers respectively.

 The DPC++ code for track seed finding with pixel detector is being studied.

 Collaboration with Intel (China) was established and zoom meetings were
organized for technical discussions.

 Short-term plan

 With the help of profiling tools, the performance of track seed finding will
be studied on both Intel and NVIDIA GPUs.

 The performance of EDM4hep/PODIO will also be investigated in the
heterogeneous computing environment.

 Implementation of asynchronous offloading in the framework

16

Development of Analysis toolkit based on RDataFrame

 RDataFrame became official part of ROOT since v6.14
 Support declarative programming

 allow users to write efficient physics analyses more easily

 Fastest way to analyze data
 supports local multi-threaded parallelization with TBB
 also supports distributed data analysis with python+Spark

without additional changes to the analysis code

 Full support analysis in both Python and C++
 Automatically generated Python bindings with PyROOT

 Already support reading EDM4hep root files

 Actively used by FCC-ee for flavour, higgs and top physics
analysis

17

Development of Analysis tool based on RDataFrame

 Plan for development analysis tool for CEPC
 Start from a inclusive analysis: Higgs recoil analysis and Higgs

width measurement in e+e- -> Z(mumu)H process
 https://github.com/zeusmail/higgsrecoil (from Gang Li)

 Use CEPCSW to convert the LCIO data produced with Marlin to
EDM4hep

 Develop the common components (functions) for analyzing
EDM4hep data (partly from FCC-ee)
 Analysis function code in C++

 event selection, filtering, vertexing, PID, Jet clustering,
producing ROOT ntuples,…

 Python for configuration
 define analysis functions, output variables, input samples, etc…

 Testing the multi-threading performance
18

Automated Validation System

 An automated validation system is being developed for software
validation at different levels
 Unit test, integrated test, performance test, physical validation etc.

 A toolkit is developed for building software validation workflow
 Provide interfaces to define and run unit tests

 Support performance profiling

 Support results validation based on statistical methods

 Automated physical validation system based on massive data
production is being developed

19

Automated Validation System

 The validation system is being integrated with the Github
Action system
 Full validation workflow can be triggered by commit/merge-request

 A web-based monitoring dashboard is also being developed

 ~ O(200) cores are now available for running validation jobs

20

GitHubPull
Request

Commit
Code Central

Database

Build
installation CVMFS

Docker Performance
Testing

DIRAC
(shared)

Kubernetes
(dedicated)Web

Portal

GitHub
Actions

Build
Servers

Test
Servers

READY

TODO

Summary

 CEPCSW framework is being developed in collaboration with the
Key4hep project

 Most CEPCSW core software components are in place and function
well to support detector simulation and reconstruction studies

 Latest developments are focused on:

 Parallel computing

 Heterogeneous computing

 RDataFrame based Analysis framework

 Automated validation system

21

Welcomed to joining CEPCSW!
We hope to work together with developers in the community.
https://github.com/cepc/cepcsw

Backup

Data Input/Output

 The default EDM4hep data format: ROOT

 k4FWCore: the default data I/O components

 PodioDataSvc: read/write podio data collections in ROOT

 DataHandler: register data collections to Gaudi

 k4LCIOReader: read LCIO data generated by Marlin

 Data converters

23

DataHandle PodioDataSvcUser
Algorithm

DataWrapper
[PLCIO Objs]DataWrapper

[PLCIO Objs]DataWrapper
[EDM4hep Objs]

ROOT Data

LCIO Datak4LCIOReader

LCIO Library

Gaudi TES LCIO ObjsEDM4hep Objs

