
Status of CEPC Software
Framework

Teng Li
on behalf of the CEPC software framework working group

2022.5.25

Outline

 Introduction

 Overview of CEPCSW

 CEPCSW core components

 Progress and plans

 Summary

2

Key4hep

 HEP software usually consist of lots of applications
 Application layer of modules / algorithms /processors

performing physics task (PandoraPFA, FastJet, ACTS,...)
 Data access and representation layer including EDM
 Experiment core orchestration layer

(Gaudi, Marlin, ...)
 Specific components reused by many experiments

(DD4hep, Delphes, Pythia,...)
 Commonly used HEP core libraries

(ROOT, Geant4, CLHEP, ...)
 Commonly used tools and libraries

(Python, CMake, boost, ...)

 Turnkey software for future colliders
 An agreement at Future Collider Software Workshop (Bologna, June 2019)

 Software components sharing between different experiments
 CPEC, CLIC, FCC, ILC, STCF 3

Thomas Madlener, Epiphany Conference 2021

Status of Key4hep

 https://github.com/key4hep

 Main ingredients
 Event Data Model: EDM4hep,

based on LCIO and FCC-EDM;
podio

 Geometry Information: DD4hep

 Framework: Gaudi

 Packaging and deployment: Spack

4

 Key4hep is under rapid development

 Weekly meetings: https://indico.cern.ch/category/11461

André Sailer, etc. , CHEP2021

k4FWCore EDM4hep key4hep-doc key4hep-spack EDM4hep-utils

k4MarlinWrapper k4Clue k4LCIOReader k4SimDelphes k4Analysis

k4EDM4hep2L
cioConv

key4hep-
validation k4ActsTracking key4DCMTSim k4Pandora

CEPCSW

 Based on Key4HEP

 Reuse existing components

 Gaudi, EDM4hep, DD4hep, ...

 Implement the specific components
for CEPC

 Geometry, generator, simulation and
reconstruction algorithms, etc.

 Provide ready-to-work environment to
algorithm developers and physicists

 Porting algorithms from iLCSoft to
CEPCSW

 Integrate/develop more algorithms and
features

5
https://github.com/cepc/CEPCSW

Data Processing Framework: Gaudi

 Modular design and well defined component interfaces

 Three basic categories of data characterized by their lifetime

 Seperation of algorithm, transient and persistent data in the
event loop

6

Geometry Description Toolkit: DD4hep

 DD4hep provides complete detector description in CEPCSW

 Provides geometry, materials, visualization, readout, calibration...

 Single source of information to ensure consistent description

 In simulation, reconstruction, analysis

 Supports full experiment life
cycle

 Detector concept development,
detector optimization, construction,
operation

 Facile transition from one stage
to the next

 See latest developments:
https://github.com/AIDASoft/DD4hep

7

Common Event Data Model: EDM4hep

 EDM4hep is the common EDM that can be used by all communities in the
Key4Hep project: ILC, CLIC, FCC-ee & FCC-hh, CEPC, ...

 Efficiently implemented, support multi-threading and potentially
heterogeneous computing

 Use podio to generate thread safe code starting from yaml description

8

Recent Developments of EDM4hep and podio

 The support of schema evolution is being developed

 A critical function to guarantee backward compatibility of data

 Support of podio::Frame

 Act as a container that aggregates and owns all relevant data
(collections and metadata)

 EDM4hep extensions under discussion
 Split EDM4hep into a 'core EDM4hep' and a few extensions

 Other enhancements and improvements

 Adding edm4hep::Quantity in Track to support dN/dx and dE/dx etc.
#137

 Support of fixed width variables #186

 A lot more...

9

Simulation Framework (1)

10

 Hit-level background mixing
 Event pre-mixing strategy is adopted to generate the

simulated background data.

 A GenTool called GtBeamBackgroundTool has been
developed to simulate the beam background data.

Beam
background
Generator

MC
Particles

Detector
Simulation MC Hits

Simulated
background
event data

Background data preparation:

Physics simulation and event mixing:

Physics
Generator

MC
Particles

Detector
Simulation MC Hits Event Mixing

Simulation Framework (2)

 Integration with ML based simulation
 ONNX: Open Neural Network Exchange

 Open standard for machine learning interoperability

 Inference based on ONNX and ONNX runtime

 ONNX Runtime:
 Supporting Models from Tensorflow, PyTorch, scikit-learn,

XGBoost…

11

Geant4
Simulation
Framework

FastSim
Model

Intermediate
Representation
(based on ONNX)

ML/DL
Model

G4FastStep

Anna Zaborowska, AIDAInnova WP 12.3 Fast Simulation CERN contribution

Software Building and Management

 Common tools

 CMake: Build & deployment
 Gaudi cmake macros

 Git: version control
 https://github.com/cepc/cepcsw
 A Gitlab mirror is planned

 CVMFS: software distribution
 CEPC specific: /cvmfs/cepcsw.ihep.ac.cn/prototype

 In current software release

 Build by ourselves: Gaudi, k4FWCore, EDM4hep, GEAR,
GenFit, podio, LCIO, k4LCIOReader, Pandora

 Re-use the LCG software stack for other external libraries

12

Parallel Computing

 GaudiHive

 A component in Gaudi now

 Concurrency in event & alg level

 Work to be done in Key4HEP

 Thread-safe I/O components

 Other core services (DB, Geom …)

 Performance testing and
optimization

 Challenges

 Thread-safe algorithms

 Suitable job types

13From: http://iopscience.iop.org/1742-6596/513/5/052028

Heterogeneous Computing (1)

 Motivation

 Computational accelerators are becoming increasingly prevalent.

 LHC experiments, including ATLAS and CMS, launched heterogeneous
computing projects a number of years ago.

 With an abstract software layer, it can be achieved for one copy of source
code to be run on different hardware devices.

14

 SYCL and DPC++

 SYCL enables the definition of data
parallel functions, which can be
offloaded to CPU/GPU/FPGA devices,
by providing required APIs and runtime
libraries.

 The oneAPI DPC++ is an extension on
top of SYCL. So it can provide a
unified programming model across
multiple hardware architectures.

Heterogeneous Computing (2)

 Traccc is successfully built with DPC++ from Intel oneAPI and the
Intel/llvm compiler with CUDA extension.

 The different devices could be used automatically with SYCL.

15

Config Hardware OS Compiler SYCL
backend

Bulid
traccc

Run
traccc

1 Intel CPU
(IHEP login node)

CentOS
7.8

LCG 101 (GCC 10.3 +
clang 12) + oneAPI
DPC++

CPU OK OK

2 Intel CPU +
NVIDIA RTX 8000
(workstation)

CentOS
7.9

LCG 101 (GCC 11.1) +
intel/llvm (2021-12)

CUDA 11.2 OK OK

Config 1: more than 1 CPUs are used. Config 2: NVIDIA GPU is used.

Heterogeneous Computing (3)

 Progress

 With dpcpp and Intel LLVM, track seed finding software of ACTS was
successfully compiled and run on CPU and GPU servers respectively.

 The DPC++ code for track seed finding with pixel detector is being studied.

 Collaboration with Intel (China) was established and zoom meetings were
organized for technical discussions.

 Short-term plan

 With the help of profiling tools, the performance of track seed finding will
be studied on both Intel and NVIDIA GPUs.

 The performance of EDM4hep/PODIO will also be investigated in the
heterogeneous computing environment.

 Implementation of asynchronous offloading in the framework

16

Development of Analysis toolkit based on RDataFrame

 RDataFrame became official part of ROOT since v6.14
 Support declarative programming

 allow users to write efficient physics analyses more easily

 Fastest way to analyze data
 supports local multi-threaded parallelization with TBB
 also supports distributed data analysis with python+Spark

without additional changes to the analysis code

 Full support analysis in both Python and C++
 Automatically generated Python bindings with PyROOT

 Already support reading EDM4hep root files

 Actively used by FCC-ee for flavour, higgs and top physics
analysis

17

Development of Analysis tool based on RDataFrame

 Plan for development analysis tool for CEPC
 Start from a inclusive analysis: Higgs recoil analysis and Higgs

width measurement in e+e- -> Z(mumu)H process
 https://github.com/zeusmail/higgsrecoil (from Gang Li)

 Use CEPCSW to convert the LCIO data produced with Marlin to
EDM4hep

 Develop the common components (functions) for analyzing
EDM4hep data (partly from FCC-ee)
 Analysis function code in C++

 event selection, filtering, vertexing, PID, Jet clustering,
producing ROOT ntuples,…

 Python for configuration
 define analysis functions, output variables, input samples, etc…

 Testing the multi-threading performance
18

Automated Validation System

 An automated validation system is being developed for software
validation at different levels
 Unit test, integrated test, performance test, physical validation etc.

 A toolkit is developed for building software validation workflow
 Provide interfaces to define and run unit tests

 Support performance profiling

 Support results validation based on statistical methods

 Automated physical validation system based on massive data
production is being developed

19

Automated Validation System

 The validation system is being integrated with the Github
Action system
 Full validation workflow can be triggered by commit/merge-request

 A web-based monitoring dashboard is also being developed

 ~ O(200) cores are now available for running validation jobs

20

GitHubPull
Request

Commit
Code Central

Database

Build
installation CVMFS

Docker Performance
Testing

DIRAC
(shared)

Kubernetes
(dedicated)Web

Portal

GitHub
Actions

Build
Servers

Test
Servers

READY

TODO

Summary

 CEPCSW framework is being developed in collaboration with the
Key4hep project

 Most CEPCSW core software components are in place and function
well to support detector simulation and reconstruction studies

 Latest developments are focused on:

 Parallel computing

 Heterogeneous computing

 RDataFrame based Analysis framework

 Automated validation system

21

Welcomed to joining CEPCSW!
We hope to work together with developers in the community.
https://github.com/cepc/cepcsw

Backup

Data Input/Output

 The default EDM4hep data format: ROOT

 k4FWCore: the default data I/O components

 PodioDataSvc: read/write podio data collections in ROOT

 DataHandler: register data collections to Gaudi

 k4LCIOReader: read LCIO data generated by Marlin

 Data converters

23

DataHandle PodioDataSvcUser
Algorithm

DataWrapper
[PLCIO Objs]DataWrapper

[PLCIO Objs]DataWrapper
[EDM4hep Objs]

ROOT Data

LCIO Datak4LCIOReader

LCIO Library

Gaudi TES LCIO ObjsEDM4hep Objs

