

Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022

Application of quantum computing to physics analysis at the CEPC experiment

<u>Abdualazem Fadol</u>, Yaquan Fang, Zhan Li Qiyu Sha, Chen Zhou

May 24, 2022

- □ Support-vector machines
- □ CEPC signatures
- \Box Optimising the feature map
- □ Hyperparameters tuning
- \square ROC curve result
- □ Summary

Overview

Quantum computing systems:

- Circuit model
- Turing machine
- Adiabatic quantum computation
- One-way quantum computer
- Cellular automata
- □ The main goal is to break the limitations:
 - o handling more complex data
 - $\circ~$ speed and storage problem
- □ However, quantum computers are at their early stage.
- $\hfill\square$ Is it possible to use machine learning in quantum computing?
 - o locating more computationally complex feature spaces
 - better data classification
 - $\circ\;$ smarter algorithms which give accurate prediction.

 $\hfill\square$ We explore machine learning—support-vector machines:

- In quantum computing systems
- Conventional system
- \Box Also, the performance in quantum simulator is studied.

□ Supervised machine learning algorithms for classifications;

$$(\vec{x}_i, y_i) \dots (\vec{x}_n, y_n)$$

 $\hfill\square$ If the data is not linearly separable \Rightarrow move to Kernel

$$k_{ij}(\vec{x}_i,\vec{x}_j) = \langle f(\vec{x}_i), f(\vec{x}_j) \rangle$$

 \Box The function $f(\vec{x})$ could be:

• Radial basis function

$$f(\vec{x}_i) = e^{-\frac{\vec{x}_i^2}{2\sigma^2}}$$

polynomial

$$f(\vec{x}_i) = (\gamma \cdot \vec{x}_i^T + r)^d; \quad \gamma > 0$$

sigmoid

Support-vector machines Quantum support-vector, QSVM

□ In a quantum kernel, a classical feature \vec{x} is mapped to higher dimension Hilbert space like $|\phi(\vec{x})\rangle\langle\phi(\vec{x})|$ in such a way that:

$$k_{ij}(\vec{x}_i, \vec{x}_j) = |\langle \phi(\vec{x}_i) | \phi(\vec{x}_j) \rangle|^2$$

- □ The circuit is used to evaluate the kernel.
- \Box Hadamard *H* and controlled not gates.
- The classical data is encoded using the unitary.
- □ To match the qubit structure:

$$\vec{x}_i : \vec{x}_i \to \vec{x}_i$$
, where $\vec{x}_i \in [1, -1]$

CEPC signatures

 $\hfill\square$ Use Monte Carlo simulation for the signal and backgrounds:

- Signal process $e^+e^- \rightarrow ZH \rightarrow \gamma\gamma q\bar{q}$
- Backgrounds $e^+e^-
 ightarrow (Z/\gamma^*)\gamma\gamma$
- □ The samples are generated with the CEPC configurations;
- $\hfill\square$ at a centre-of-mass energy of 240 GeV with an integrated luminosity of 5.6 $ab^{-1}.$
- $\hfill\square$ Up to 36k signal and 25k background events are generated.
- $\hfill\square$ Six variables are used in both SVM and QSVM (6 qubits).

$$\vec{x}_i \rightarrow 2 \cdot \frac{\vec{x}_i - \vec{x}_{i,\min}}{\vec{x}_{i,\max} - \vec{x}_{i,\min}}$$

CEPC signatures

8

CEPC signatures

 \square Mapping \vec{x}_i , for each $\vec{x}_i \in \mathbb{R}$, such that:

 $\vec{x}_i : \vec{x}_i \to \vec{x}_i$, where $\vec{x}_i \in [1, -1]$

Optimising the feature map

Full forward and backward entanglements

10

Optimising the feature map Partial forward and backward entanglements

Entanglement	Rotation	Repetition	AUC	Entanglement	Rotation	Repetition	AUC
	$R_x - R_y$	1	0.780		$R_x - R_y$	1	0.769
		2	0.813			2	0.834
		3	0.787			3	0.785
		10	0.767			10	0.751
	$R_y - R_x$	1	0.787		$R_y - R_x$	1	0.752
		2	0.830			2	0.819
		3	0.806			3	0.822
		10	0.783			10	0.771
	$R_y - R_z$	1	0.842		$R_y - R_z$	1	0.839
		2	0.813			2	0.833
		3	0.819			3	0.806
		10	0.788			10	0.747
	$R_z - R_y$	1	0.852		$R_z - R_y$	1	0.829
		2	0.811			2	0.822
		3	0.809			3	0.825
		10	0.756			10	0.759
	$R_x - R_y$	1	0.795		$R_x - R_y$	1	0.760
		2	0.835			2	0.839
		3	0.829			3	0.835
		10	0.776			10	0.753
	$R_y - R_x$	1	0.750		$R_y - R_x$	1	0.770
		2	0.810			2	0.803
		3	0.826			3	0.817
		10	0.815			10	0.780
	$R_y - R_z$	1	0.841		$R_y - R_z$	1	0.843
		2	0.808			2	0.792
		3	0.823			3	0.837
		10	0.769			10	0.753
	R _z – R _y	1	0.849		$R_z - R_y$	1	0.822
		2	0.810			2	0.812
		3	0.809			3	0.834
		10	0.769			10	0.777

11

Hyperparameters tuning C and γ regularisation parameters

12

 \Box C is the penalty parameter, which represents misclassification or error term.

- $\Box~\gamma$ defines how far influences the calculation of plausible line of separation.
- \Box SVM (left): (C, γ) = (10, 0.1); and for QSVM (right): (C, γ) = (100, 1)
- $\hfill\square$ IBM quantum simulator, statevector simulator, is used for the QSVM.
- $\hfill\square$ 2k events is used for both training and testing.

ROC curve result QSVM, using IBM quantum simulator, vs SVM

13

Real quantum computing system

14

 \Box Using 100 events for both training and testing the quantum algorithm (5 qubits).

Real quantum computing system Wuyuan quantum computer vs IBM simulator

15

□ Using 100 events for both training and testing the quantum algorithm (6 qubits).

- $\Box~$ We studied the $e^+e^- \to ZH \to \gamma\gamma q\bar{q}$ signal optimisation using machine learning.
- □ Support-vector machines were compared:
 - Quantum support-vector machines (QSVM) with IBM quantum simulator
 - Classical support-vector machines (SVM)
- $\hfill\square$ Each QSVM and SVM algorithm is optimised to its best before comparing them.
- $\hfill\square$ Real quantum computing system with 100 events:
 - Wuyuan vs IBM
 - IBM vs IBM simulator

Backup slides