Extraction of the CKM angle α

Sébastien Descotes-Genon

IJCLab CNRS & Université Paris-Saclay, Orsay, France Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

http://www.ijclab.in2p3.fr

CEPC workshop, 24/5/22

Laboratoire de Physique des 2 Infinis

S. Descotes-Genon (IJCLab)

The CKM matrix

In SM, flavour dynamics related to weak charged transitions which mix quarks of different generations

Encoded in unitary CKM matrix $V_{CKM} =$

$$\left[\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right]$$

- 3 generations ⇒ 1 phase, only source of *CP*-violation in SM
- Wolfenstein parametrisation, defined to hold to all orders in λ and rephasing invariant

$$\lambda^{2} = \frac{|V_{us}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad A^{2}\lambda^{4} = \frac{|V_{cb}|^{2}}{|V_{ud}|^{2} + |V_{us}|^{2}} \qquad \bar{\rho} + i\bar{\eta} = -\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{cb}^{*}}$$

 \implies 4 parameters describing the CKM matrix

S. Descotes-Genon (IJCLab)

Two and a half decades of CKM(fitter)

[LEP, KTeV, NA48, Babar, Belle, CDF, DØ, LHCb, ATLAS, CMS, Belle II...]

2001

2004

1995

2015

S. Descotes-Genon (IJCLab)

Spring 2021

 $|V_{ud}|, |V_{us}|$ $|V_{cb}|, |V_{ub}|_{SL}$ $B \rightarrow \tau \nu$ $|V_{ub}/V_{cb}|_{\Lambda_b}$ $\Delta m_d, \Delta m_s$ ϵ_K $\sin 2\beta$ α $\begin{array}{l} \textit{A} = 0.813^{+0.012}_{-0.006} \\ \textit{\lambda} = 0.225^{+0.0002}_{-0.0002} \end{array}$ $ar{
ho}=0.157^{+0.000}_{-0.005}\ ar{\eta}=0.347^{+0.012}_{-0.005}$ (68% CL)

 α compatible with rest of the fit, but less precise than other constraints

S. Descotes-Genon (IJCLab)

α from $\pi\pi$

Tree

Penguin

$$A(B^{0} \to \pi^{+}\pi^{-}) = V_{ud}V_{ub}^{*}t + \sum_{q=u,c,t} V_{qd}V_{qb}^{*}p_{q} = V_{ud}V_{ub}^{*}t^{+-} + V_{td}V_{tb}^{*}p^{+-}$$

α from $\pi\pi$

$$A(B^{0} \to \pi^{+}\pi^{-}) = V_{ud}V_{ub}^{*}t + \sum_{q=u,c,t} V_{qd}V_{qb}^{*}p_{q} = V_{ud}V_{ub}^{*}t^{+-} + V_{td}V_{tb}^{*}p^{+-}$$

Time-dependent CP asymmetry : $A(t) = \frac{\Gamma(B^{0}(t) \to \pi^{+}\pi^{-}) - \Gamma(B^{0}(t) \to \pi^{+}\pi^{-})}{\Gamma(\overline{B}^{0}(t) \to \pi^{+}\pi^{-}) + \Gamma(B^{0}(t) \to \pi^{+}\pi^{-})}$

$$A(t) = S^{+-} \sin(\Delta mt) - C^{+-} \cos(\Delta mt)$$

= $\sqrt{1 - (C^{+-})^2} \sin 2\alpha_{eff} \sin(\Delta mt) - C^{+-} \cos(\Delta mt)$

S. Descotes-Genon (IJCLab)

α from $\pi\pi$

$$\mathcal{A}(B^{0} \to \pi^{+}\pi^{-}) = V_{ud}V_{ub}^{*}t + \sum_{q=u,c,t} V_{qd}V_{qb}^{*}p_{q} = V_{ud}V_{ub}^{*}t^{+-} + V_{td}V_{tb}^{*}p^{+-}$$

Time-dependent CP asymmetry : $A(t) = \frac{\Gamma(\bar{B}^{0}(t) \to \pi^{+}\pi^{-}) - \Gamma(B^{0}(t) \to \pi^{+}\pi^{-})}{\Gamma(\bar{B}^{0}(t) \to \pi^{+}\pi^{-}) + \Gamma(B^{0}(t) \to \pi^{+}\pi^{-})}$

$$A(t) = S^{+-}\sin(\Delta mt) - C^{+-}\cos(\Delta mt)$$

= $\sqrt{1 - (C^{+-})^2}\sin 2\alpha_{eff}\sin(\Delta mt) - C^{+-}\cos(\Delta mt)$

Combining CKM for t^{+-} and $B - \overline{B}$ mixing: $S^{+-} = \sin(2\alpha) + O(\frac{p^{+-}}{t^{+-}})$ \implies Penguin pollution: handle on p^{+-} and t^{+-} to extract $\sin(2\alpha)$

S. Descotes-Genon (IJCLab)

Isospin analysis for ${\it B} ightarrow \pi\pi$

In terms of isospin quantities $Q_{l_z}^{(I)}$

- Two operators for $ar{b}
 ightarrow ar{u} u ar{d}$: $O^{(3/2)}_{1/2}$ and $O^{(1/2)}_{1/2}$
- Two inital states: $|B^+
 angle=|B^{(1/2)}_{1/2}
 angle$ and $|B^0
 angle=|B^{(1/2)}_{-1/2}
 angle$
- Three final states: [I = 1 forbidden by Bose symmetry]

$$\begin{aligned} \langle \pi^{+}\pi^{0}| &= \langle \pi\pi_{1}^{(2)}| \qquad \langle \pi^{+}\pi^{-}| &= \sqrt{\frac{1}{3}} \langle \pi\pi_{0}^{(2)}| + \sqrt{\frac{2}{3}} \langle \pi\pi_{0}^{(0)}| \\ \langle \pi^{0}\pi^{0}| &= \sqrt{\frac{2}{3}} \langle \pi\pi_{0}^{(2)}| - \sqrt{\frac{1}{3}} \langle \pi\pi_{0}^{(0)}| \end{aligned}$$

From $B^{(1/2)}$, $O^{(3/2)}$ can only yield I = 2 final states, and $O^{(1/2)}$ only I = 0, so two reduced amplitudes

$$A_{2} = \frac{1}{2\sqrt{3}} \langle \pi \pi^{(2)} || O^{(3/2)} || B^{(1/2)} \rangle \qquad A_{0} = -\frac{1}{\sqrt{6}} \langle \pi \pi^{(0)} || O^{(1/2)} || B^{(1/2)} \rangle$$

Trapping the penguin in $B \rightarrow \pi \pi$

 $\begin{array}{rcl} B^+, B^0 & : & A^{+0} = 3A_2 & A^{+-} = \sqrt{2}(A_2 - A_0) & A^{00} = 2A_2 + A_0 \\ B^-, B^0 & : & \bar{A}^{+0} = 3\bar{A}_2 & \bar{A}^{+-} = \sqrt{2}(\bar{A}_2 - \bar{A}_0) & \bar{A}^{00} = 2\bar{A}_2 + \bar{A}_0 \end{array}$

 A^{+0} is $I = 2 \pi \pi$, only from tree and (negligible) I = 3/2 penguins

Two triangular relations

$$\begin{array}{rcl} A^{+-} + \sqrt{2} A^{00} & = & \sqrt{2} A^{+0} \\ \bar{A}^{+-} + \sqrt{2} \bar{A}^{00} & = & \sqrt{2} \bar{A}^{+0} \end{array}$$

from BR (B^{+0} , B^{+-} , B^{00}) and CP-asyms. (C^{+-} , S^{+-} , C^{00})

Trapping the penguin in $B \rightarrow \pi \pi$

$$\begin{array}{rcl} B^+, B^0 & : & A^{+0} = 3A_2 & A^{+-} = \sqrt{2}(A_2 - A_0) & A^{00} = 2A_2 + A_0 \\ B^-, B^0 & : & \bar{A}^{+0} = 3\bar{A}_2 & \bar{A}^{+-} = \sqrt{2}(\bar{A}_2 - \bar{A}_0) & \bar{A}^{00} = 2\bar{A}_2 + \bar{A}_0 \end{array}$$

 A^{+0} is $I = 2 \pi \pi$, only from tree and (negligible) I = 3/2 penguins

Two triangular relations

$$\begin{array}{rcl} A^{+-} + \sqrt{2} A^{00} & = & \sqrt{2} A^{+0} \\ \bar{A}^{+-} + \sqrt{2} \bar{A}^{00} & = & \sqrt{2} \bar{A}^{+0} \end{array}$$

from BR (B^{+0} , B^{+-} , B^{00}) and CP-asyms. (C^{+-} , S^{+-} , C^{00})

Introducing $\tilde{A}^{ij} = exp(-2i\beta)\bar{A}^{ij}$, 2α between A^{+0} and \tilde{A}^{+0} , $2\alpha_{eff}$ between A^{+-} and \tilde{A}^{+-}

- Measure mixed CP-asymmetry in $\pi^+\pi^-$ as $\sin(2\alpha_{eff})$
- Reconstruct the triangles
- Up to discrete ambiguities, possible to determine $sin(2\alpha)$

S. Descotes-Genon (IJCLab)

$\pi\pi$ triangles

Reconstructing the two triangles (normalised by +0) to get α from $\alpha_{\rm eff}$

The *A* triangle is (almost) flat, whereas the \overline{A} triangle is not (two-fold degeneracy of the eight solutions : only four distinct solutions)

Possibility to extend the analysis to $\rho\rho$ and $\rho\pi$ systems

S. Descotes-Genon (IJCLab)

Determination of α

- Four-fold ambiguity for $\pi\pi$
- Two-fold ambiguity for $\rho\rho$
- No ambiguity for $\rho\pi$

(agreement only at 3σ with other determinations)

Including all modes: α [combined] = $(86.4^{+4.3}_{-4.0} \cup 178.5^{+3.1}_{-5.2})^{\circ}$

indirect fit determination (not including α measurements): α [indirect] = (91.9^{+1.6}_{-1.2})° (pull of 1.3 σ)

TeraZ measurements for $B \rightarrow \pi^0 \pi^0$ (1)

Impact of TeraZ/CEPC measurements of $\pi\pi$ on precision for α ?

[Wang, Li, Chen, Zhu, Ruan, Deschamps, SDG; see Yuexin Wang's talk]

Assuming central values are unchanged reduction of uncertainty on 00 side, but ambiguity not fully lifted

S. Descotes-Genon (IJCLab)

TeraZ measurements for $B \rightarrow \pi^0 \pi^0$ (2)

 $\alpha(\pi\pi)$ alone

Combined with $\alpha(\rho\rho), \alpha(\rho\pi)$

TeraZ measurements for $B \rightarrow \pi^+\pi^-, \pi^+\pi^0$

${m B} ightarrow \pi\pi$ obs	World average	TeraZ
$\Delta {\sf BR}({\it B} ightarrow \pi^+\pi^-)/{\sf BR}$	3.7%	0.15%
ΔC_{+-}	0.030	0.0021
ΔS_{+-}	0.029	0.0018
$\Delta {\sf BR}({\it B} ightarrow \pi^+\pi^0)/{\sf BR}$	11.3%	0.16%

Only a slight improvement without $\pi^0\pi^0$ update (the +- side is already quite well known)

S. Descotes-Genon (IJCLab)

TeraZ measurements for $B \rightarrow \pi^+\pi^-, \pi^+\pi^0, \pi^0\pi^0$ (1)

Much better situation once all three modes improved the separation of solutions for the (almost flat) *B* isospin triangle requires improving both neutral and charged modes

Caveat: Depends on the central values (kept unchanged here)

S. Descotes-Genon (IJCLab)

TeraZ measurements for $B \rightarrow \pi^+\pi^-, \pi^+\pi^0, \pi^0\pi^0$ (2)

TeraZ $\alpha(\pi\pi) = (84.5 \pm 0.3)^{\circ}$ +mirror solutions

At that level of accuracy, the statistical resolution becomes smaller than isospin breaking effects $(1^{\circ} - 2^{\circ})$

S. Descotes-Genon (IJCLab)

TeraZ measurements for $B \rightarrow \pi^+\pi^-, \pi^+\pi^0, \pi^0\pi^0$ (2)

TeraZ
$$\alpha(\pi\pi) = (84.5 \pm 0.3)^{\circ}$$

+mirror solutions

At that level of accuracy, the statistical resolution becomes smaller than isospin breaking effects $(1^\circ - 2^\circ)$

Several sources of isospin breaking

- Δ*I* = 3/2 electroweak penguins: theoretical estimates available
- isospin breaking in $\pi\pi$: $\pi^{0} - \eta - \eta'$ mixing could be better controlled with more data on $B^{0,+} \rightarrow \pi^{+,0}\eta(')$
- isospin breaking in ρρ: effect of the width of the ρ
- isospin breaking in *ρ*π: negligible according to theoretical estimates

A missing observable

- Time-dependent asym for $B^0 o \pi^0 \pi^0$ (S^{00}) not yet measured
- Can be predicted from the outcome of the fit
- Would help to resolve ambiguities of mirror solutions
- As it yields information on relative phase of A_{00} and \bar{A}_{00}

 S^{00} prediction from rest of the fit

Impact of measuring S^{00} on $\alpha(\pi\pi)$

Conclusions

 α angle

- important ingredient to improve the determination of the CKM matrix
- based on $B \to \pi\pi, \rho\pi, \rho\rho$ measuremnts (BR, CP-asymmetries) to assess penguin contributions, through isospin analysis

TeraZ/CEPC can improve the situation through

- $B^0 \rightarrow \pi^0 \pi^0$ measurements: better separation of mirror solutions, combined determination of α around 1°
- adding charged modes: around 0.3°, below systematics due to isospin breaking effects
- caveat: assuming central values unchanged
- $B^{0,+} \rightarrow \pi^{0,+} \eta(')$: improvement of isospin breaking systematics

Thanks for your attention. Hope to meet you soon in Beijing !

Bonus track

Extension to $\rho\rho$ and $\rho\pi$

 $\rho\rho$

- Analysis for each helicity state, dominated by longit. polarisation
- B^{+-} and B^{+0} five times larger than $\pi\pi$, B^{00} similar
- indicating a smaller penguin contamination than $\pi\pi$
- same inputs + (loose) info from S^{00}

Extension to $\rho\rho$ and $\rho\pi$

 $\rho\rho$

- Analysis for each helicity state, dominated by longit. polarisation
- B^{+-} and B^{+0} five times larger than $\pi\pi$, B^{00} similar
- indicating a smaller penguin contamination than $\pi\pi$
- same inputs + (loose) info from S^{00}

 $ho\pi$

- Dalitz plot for neutral *B* modes: $A_{3\pi} = f_+ A^{+-} + f_- A^{-+} + f_0 A^{00}$ with $A^{ij} = A(B^0 \rightarrow \rho^i \pi^j)$ and ρ^i line-shape f_i
- $\Gamma(t)$: interferences $f_i^* f_j$ and $A^{ij} A^{ij*}$ (coefficients \mathcal{U} and \mathcal{I})
- Coefficients U and I yield A^{ij} and A^{ij} for +-, -+, 00 providing α as relative phase between combinations of amplitudes
- Similar analysis for charged *B* modes, and since distinguishable particles, isospin yields pentagonal relations

$$A^{+-} + A^{-+} + 2A^{00} = \sqrt{2}(A^{+0} + A^{0+})$$

• Pentagonal rels. + Charged and neutral Dalitz \Longrightarrow full α constraint

$\rho\rho$ triangle

Both triangles are flat

(four-fold degeneracy of the eight solutions : only two distinct solutions)

$ho\pi$ analysis

Constraint on the reduced amplitude $(A^{+-} + A^{-+})/(A^{+0} + A^{0+})$ One of the two triangles is flat

Isospin breaking by penguins

Broken by electroweak $\Delta I = 1/2$ penguins in $B^+ \rightarrow h^+ h^0$

$$A^{+-} = T^{+-}e^{-i\alpha} + P^{+-}$$

$$\sqrt{2}A^{00} = T^{00}e^{-i\alpha} - P^{+-} + P^{+0}_{EW}$$

$$\sqrt{2}A^{+0} = (T^{+-} + T^{00})e^{-i\alpha} + P^{+0}_{EW}$$

Model-independent constraint from effective Hamiltonian analysis

$$\frac{P_{EW}^{+0}}{T^{+0}e^{-\imath\alpha}} \sim -\frac{3}{2}\frac{\mathcal{C}_9 + \mathcal{C}_{10}}{\mathcal{C}_1 + \mathcal{C}_2} \left| \frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*} \right| \qquad \text{(But}$$

[Buras, Fleischer, Neubert, Rosner]

neglecting small ew ops \mathcal{O}_7 and $\mathcal{O}_8,$ leading to theoretical estimate

$$\begin{aligned} r_{P_{EW}} &= \frac{P_{EW}^{+0}}{T^{+0}} = (3.23 \pm 0.30) \cdot 10^{-2} \\ \Delta \alpha &= \alpha - \alpha |_{r_{P_{EW}} = 0} = \arcsin[r_{P_{EW}} \sin \alpha] < 1.9^{\circ} \end{aligned}$$

• Indirect constraint from the fit Charles, Deschamps, SDG, Niess

$$r_{P_{EW}}(\pi\pi) = (-8 \pm 16) \cdot 10^{-2}$$
 $r_{P_{EW}}(\rho\rho) = (-2.3^{+10.5}_{-7.7}) \cdot 10^{-2}$

Consistency of the KM mechanism

Validity of Kobayashi-Maskawa picture of CP violation

S. Descotes-Genon (IJCLab)

- Pulls for various observables (included in the fit or not)
- For 1D, pull obs = $\sqrt{\chi^2_{\text{min; with obs}} - \chi^2_{\text{min; w/o obs}}}$
- If Gaussian errors, uncorrelated, random vars of mean 0 and variance 1
- Here correlations, and some pulls = 0 due to the Rfit model for syst

No indication of significant deviations from CKM picture