Measurement of $B_s \rightarrow \phi VV$ (at CEPC but also applies to FCC-ee)

Lingfeng Li (Brown U.)

Based on arXiv:2201.07374

With Manqi Ruan, Yudong Wang and Yuexin Wang

May 23, Joint Workshop of the CEPC Physics, Software and New Detector Concept in 2022

Motivation (I): Flavor Anomalies

A number of recently anomalies in the flavor sector: $R_{K(*)}$, $R_{D(*)}$, $R_{J/\psi}$... Often indicating lepton flavor universality violation (LFUV).

In charged currents, observed deviations of τ , in neutral currents, only μ deviations are observed.

b -> svv type of decays are crucial for LFUV tests [0902.0160, 1409.4557, 1506.02661, 1706.07808, and many more]

See also Andreas Crivellin's talk

Motivation(II): General Perspectives

Imagine testing SM and probing BSM but start with **one-loop electroweak**

Predictions are also "clean": neutrinos are non-interactive at low scale, get rid of messy one-loop hadronic/QED corrections.

Motivation(III): Z Pole Phenomenology

The current limit (~5.4×10⁻³) still led by the [LEP result]:

- Significant missing energy: not ideal for hadron colliders.
- ➢ Relies on B_s production: limited at B-factories.
- Set a "golden channel" benchmark at the Z pole.

See also [an attempt for B-> K*vv]

Questions to begin with

Background: would they be significant? What's their nature?

2201.07374

Signal: event rate? Kinematic distribution?

Quick Answers

Dominant background: $B_{(s)} \rightarrow D_{(s)} \rightarrow \phi + X \rightarrow v$ with the extra lepton/neutrals being soft and untagged.

Signal BR is ~1×10⁻⁵, or 3×10^5 signals from Tera-Z. Distribution of $q^2 \equiv m^2(vv)$ calculated from the lattice result [RR. Hogan, Z. Liu, S. Meinel, M Wingate, 1501.00367].

>Lepton identification and event reconstruction is the key.

- To get a reasonable signal-to-background ratio, background rejection must be > 10⁶
- ➤Analysis very different from LEP!

Step1: ϕ reconstruction

← Brute-force-pairing of K⁺K⁻
 together and get the peak.
 [T. Zheng and J. Wang and Y. Shen, Y.E. Cheung, M.
 Ruan, EPJC, 2020]

- Must from the same vertex
- Must in the hemisphere with lower total energy
- Gaussian approximation of PID

Interlude of Particle Identification (PID)

Particle Separation (dE/dx vs dN/dx)

The progress in dE(N)/dx, time-of-flight, RICH detection lead to > 3σ separation between K and π .

⊟: If the PID power is low, real φwould be overwhelmed by π fakes, satiates after 4-5 σ

Full reconstruction

Step 1: The momentum direction of ¹ B_s is determined by the displacement between the primary vertex (PV) and secondary vetex (SV)

Step 2: Infer the total invisible energy using momentum conservation See also Anson Kwok's talk this afternoon

Vertex of ϕ

Signal-hemisphere

 \overrightarrow{P}_{B_c}

IP

Reconstruction errors comes from various (sometimes non-Gaussian) noises: detector resolution, untagged particles, extra neutrino(s), electron ISR ...

Useful Features:

I: Major backgrounds: $B \rightarrow D(-> \phi + X) + lv$, leading lepton energy in the signal hemisphere is useful

Ratio between ϕ energy and the visible energy (α 1) and visible vs. beam energy (α 2)

→: Background 1: Signal

Results

Cuts	$B_s o \phi \nu \bar{\nu}$	$u\bar{u}+d\bar{d}+s\bar{s}$	$car{c}$	$b\overline{b}$	total bkg	$\sqrt{S+B}/S$ (%)
CEPC events $(10^{12}Z)$	$3.03 imes 10^5$	4.28×10^{11}	1.20×10^{11}	1.51×10^{11}	6.99×10^{11}	276
$N_{\phi(\rightarrow K^+K^-)} > 0$	8.09×10^{4}	1.09×10^{10}	4.04×10^9	6.08×10^{9}	$2.10 imes 10^{10}$	179
^a "Signal" ϕ	5.38×10^4	2.52×10^8	$4.09 imes 10^8$	1.69×10^{9}	2.35×10^9	90.9
Energy asymmetry $> 8 \text{ GeV}$	4.74×10^{4}	6.25×10^{7}	9.76×10^{7}	4.93×10^{8}	6.53×10^{8}	53.9
$E_{B_s}^N > 28 { m ~GeV}$	4.06×10^4	4.25×10^6	9.59×10^6	$5.00 imes 10^7$	$6.38 imes 10^7$	19.7
$\alpha < 1.1$	3.03×10^4	2.41×10^{6}	3.10×10^{6}	$8.47 imes 10^6$	$1.40 imes 10^7$	12.4
b-tag > 0.6	2.33×10^4	$< 2.0 imes 10^4$	2.95×10^5	$5.97 imes 10^6$	6.27×10^{6}	10.77
E_{μ} and $E_e < 1.2 \text{ GeV}$	2.10×10^{4}	-	5.85×10^{4}	$2.10 imes 10^6$	2.16×10^{6}	7.03
$\theta_{\phi}^{\mathrm{miss}} > 0.1 \mathrm{\ rad}$	1.77×10^4	-	2.75×10^{4}	$1.38 imes10^6$	1.41×10^6	6.75
$q^2 < 14.0 \text{ GeV}^2$	1.34×10^{4}	-	2.02×10^{4}	6.04×10^{5}	6.24×10^{5}	5.96
BDTG response > 0.89	0.75×10^{4}	-	$< 1 imes 10^2$	1.03×10^{4}	1.03×10^4	1.78
Efficiency	2.40%	-	-	6.82×10^{-8}	1.47×10^{-8}	-
Inclusive b-jet taggi removes most non- backgrounds	Finaly, background rejection Relative se reaches O(10 ⁷), leaving an S/B ≈ 1 O(2%)				tive sensitivity: %)	
~		22	01 07274			10

Results (II)

↓ : Many other handles stop sensitivity drops when PID is not ideal

Summary and Outlook

- Set up an benchmark for future collider flavor phenomenology.
- Relative precision of O(1%) is achievable at Tera-Z (with full detector simulation!). Compare with Belle II (~10% of B->K*vv)

- Both BR and polarization are useful in constraining new physics. Best when combined with pesudoscalar transitions.
- Arguably the best channel? B->K*vv affected by the large width of K*, phenomenology of B->Kvv unknown.
- > Also useful for light BSM states (e.g.) $B_s \rightarrow \phi + ALP$, a bump in the q² distribution.