

中國科學院為能物加加完備 Institute of High Energy Physics Chinese Academy of Sciences

$B_{(s)}^{0} \rightarrow \pi^{0}\pi^{0}, \eta\eta$ measurement and CKM angle α (ϕ_{2}) determination using $B \rightarrow \pi\pi$ at CEPC

Yuexin Wang, Lingfeng Li, Shanzhen Chen, Manqi Ruan

Joint Workshop of the CEPC Physics, Software and New Detector Concept May 23-25, 2022

Status of $B^0_{(s)} \to \pi^0 \pi^0$, $\eta \eta$

Experimental and theoretical branching ratios (in units of 10^{-6})

Channel	DATA	SCET [1]	QCDF	pQCD
$B^0 o \pi^0 \pi^0$	1.59 ± 0.26 [2]	$0.84 \pm 0.29 \pm 0.30 \pm 0.19$	$0.30\substack{+0.46 \\ -0.26}$	$0.24\substack{+0.09\\-0.07}$
$B^0_s \to \pi^0 \pi^0$	< 210 [3]	-	$0.13^{+0.05}_{-0.05}\ [10]$	$\begin{array}{c} 0.21\substack{+0.10\\-0.09} \ [5]\\ 0.28\substack{+0.08+0.04+0.01\\-0.07-0.05-0.00} \ [4]\end{array}$
$B^0 o \eta \eta$	< 1 [6]	$\begin{array}{c} 0.69 \pm 0.38 \pm 0.13 \pm 0.58 \\ 1.0 \pm 0.4 \pm 0.3 \pm 1.4 \end{array}$	$\begin{array}{c} 0.32\substack{+0.13+0.07\\-0.05-0.06} [7]\\ 0.16\substack{+0.03+0.43+0.09+0.10\\-0.03-0.18-0.03-0.05} [8]\end{array}$	0.067 [<mark>9</mark>]
$B_s^0 \to \eta \eta$	< 1500 [3]	$7.1 \pm 6.4 \pm 0.2 \pm 0.8 \\ 6.4 \pm 6.3 \pm 0.1 \pm 0.7$	$10.9^{+6.3+5.7}_{-4.0-4.2}$ [10]	$10.4^{+4.9}_{-3.4}$ [5]

- > Only $B^0 \to \pi^0 \pi^0$ has been observed experimentally
 - $\succ B^0 \rightarrow \pi^0 \pi^0$
 - > Puzzle: discrepancy between experimental and theoretical BR
 - ➢ Necessary to determine CKM angle alpha
 - Charmless two-body hadronic B-meson decay
 - \succ experimentally clean
 - \succ hadron physics, even new physics

Advantage of CEPC

- Tera-Z factory
 - Massive b-hadrons
 - $\sim 10^{11} B^0 \& \sim 10^{10} B_s^0$

 \succ Larger boost of b-hadrons than Belle II \rightarrow more precise vertex reconstruction

➤ Lepton collider

Cleaner collision environment and much lower background level

Benefit neutral final states reconstruction

b-hadrons	Belle II	LHCb (300 fb^{-1})	Tera-Z
$B^0,ar{B}^0$	$5.4 imes 10^{10} (50 ext{ ab}^{-1} ext{ on } \Upsilon(4S))$	$3 imes 10^{13}$	$1.2 imes 10^{11}$
B^{\pm}	$5.7 imes 10^{10} \ (50 \ { m ab}^{-1} \ { m on} \ \Upsilon(4S))$	$3 imes 10^{13}$	$1.2 imes 10^{11}$
$B^0_s,ar{B}^0_s$	$6.0 imes 10^8 \ (5 \ { m ab}^{-1} \ { m on} \ \Upsilon(5S))$	$1 imes 10^{13}$	$3.1 imes10^{10}$
B_c^{\pm}	-	$1 imes 10^{11}$	1.8×10^8
$\Lambda_b^0,ar{\Lambda}_b^0$	-	$2 imes 10^{13}$	$2.5 imes 10^{10}$

Key detector performance

- Fast simulation strategy
- b-jet tagging
 - > CEPC baseline: $\varepsilon \sim 80\%$, $p \sim 90\%$
- ECAL performance
 - > Only focus on di-photon decay of π^0 and η
 - → B mass resolution: $\sigma_{m_B} \sim 30 \text{MeV} \rightarrow 2\sigma$ separation between B^0 and B_s^0
 - ► EM resolution: $3\%/\sqrt{E} \oplus 0.3\%$

Reconstruction performance of π^0 and η

Inclusive π⁰ and η in Z → qq̄ (91.2 GeV)
N_{π⁰} ≫ N_n

> prioritize π^0 reconstruction, use remaining γ to reconstruct η

 $\succ \text{ Optimal } \epsilon \times p \text{ vs } E_{\pi^0,\eta}$ $\gg 90\% \text{ for } E_{\pi^0} > 10 \text{ GeV}$ $\gg 60\% \text{ for } E_{\eta} > 10 \text{ GeV}$

Event selection of $B^0_{(s)} \to \pi^0 \pi^0$

- > After b-tagging & π^0 reconstruction
- \succ 4 cuts on energy and angular distributions of π^0 pairs
 - Signal efficiency $\sim 40\%$
 - ➢ Background suppression ~ 3 orders of magnitude
- > Optimize mass window → minimize accuracy $\sqrt{S + B}/S$ > ~ 7.5×10⁴ B^0 → $\pi^0\pi^0$, accuracy ~ 0.4%
 - $\geq \sim 2.5 \times 10^3 B_s^0 \rightarrow \pi^0 \pi^0$, accuracy ~ 4.0%

Background components of $B^0_{(s)} \to \pi^0 \pi^0$

► Kinematic constraint → cut-off on $m_{\pi^0\pi^0} \sim 5.2 \text{ GeV}$

Event selection of $B^0_{(s)} \rightarrow \eta \eta$

- > After b-tagging & η reconstruction
- \succ Cuts on energy and angular distributions of η pairs
 - Signal efficiency $\sim 45\%$
 - ➢ Background suppression ~ 5 orders of magnitude
- ➤ Optimize mass window → minimize accuracy $\sqrt{S + B}/S$
 - $\succ \sim 700 B^0 \rightarrow \eta \eta$, accuracy $\sim 17\%$
 - $\succ \sim 2 \times 10^4 B_s^0 \rightarrow \eta \eta$, accuracy $\sim 0.9\%$

Other effects

18%

0.95%

4.5%

Photon conversion

Accuracy

- \blacktriangleright Central region ~5-10%, Forward region ~25%, ~80% can be recovered
- \blacktriangleright Average conversion rate ~3% (each photon)
 - $\rightarrow 12\%$ efficiency lost of $B^0_{(s)} \rightarrow \pi^0 \pi^0$, $\eta \eta$
- \blacktriangleright Photon separation (especially di-photon merging)
 - > 2cm \rightarrow 80% separation efficiency (CEPC baseline, 5GeV γ)
 - \geq 2cm \rightarrow 10 mrad angular separation (ECAL R_{inner}=2m)
 - > Only energetic π^0 suffers

0.45%

Determination of CKM angle α

CKM matrix: quark mixing, CP violation
 B⁰ decay related triangle relation

$$V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0,$$

Figure 12.1: Sketch of the unitarity triangle.

$$eta = \phi_1 = rg\left(-rac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}
ight), \ lpha = \phi_2 = rg\left(-rac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}
ight), \ \gamma = \phi_3 = rg\left(-rac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}
ight).$$

- $\succ \alpha$ determination via weak transition b \rightarrow uud
 - Commonly used decay modes
 - $\succ B \to \rho \rho, \pi \pi, \rho \pi$
 - Both tree and penguin diagrams
 - Penguin contribution is non-negligible
 - Using isospin conservation to deal with penguin pollution

10

Determination of CKM angle α

Ref. https://inspirehep.net/literature/1598487

Isospin analysis of $B \to \pi \pi$: $B^0 \to \pi^+\pi^-$, $\pi^0\pi^0$, $B^+ \to \pi^+\pi^0$

- ➢ 3 amplitudes can be parameterized by 12 real parameters (complex tree and penguin contributions)
- ➢ 6 parameters can be further eliminated by:
 - > 2 complex isospin relations (4 real constraints)
 - → absence of penguin contribution to $B^+ \rightarrow \pi^+ \pi^0$ (2 real constraints)
- Remain only 6 degrees of freedom!
- From experimental side
 - ➢ 6 observables are available to constrain the 6D parameter space

$$\frac{1}{\pi_{B^{i+j}}} \mathcal{B}^{ij} = \frac{|A^{ij}|^2 + |\bar{A}^{ij}|^2}{2},$$
$$\mathcal{C}^{ij} = \frac{|A^{ij}|^2 - |\bar{A}^{ij}|^2}{|A^{ij}|^2 + |\bar{A}^{ij}|^2},$$
$$\mathcal{S}^{ij} = \frac{2\mathcal{I}m(\bar{A}^{ij}A^{ij*})}{|A^{ij}|^2 + |\bar{A}^{ij}|^2},$$

Table 3 World averages for the relevant experimental observables in the $B \rightarrow \pi^{i} \pi^{j}$ modes: branching fraction $\mathcal{B}_{\pi\pi}^{ij}$, time-integrated *CP* asymmetry $\mathcal{C}_{\pi\pi}^{ij}$, time-dependent asymmetry $\mathcal{S}_{\pi\pi}^{ij}$ and correlation (ρ)

Observable	World average	References
${\cal B}^{+-}_{\pi\pi}~(imes 10^6)$	5.10 ± 0.19	[24–28]
${\cal B}^{+0}_{\pi\pi}\;(imes 10^6)$	5.48 ± 0.34	[25–27,29]
${\cal B}_{\pi\pi}^{00}~(imes 10^6)$	1.59 ± 0.18	[24,30]
$\mathcal{C}^{00}_{\pi\pi}$	-0.34 ± 0.22	[24,30]
$\mathcal{C}^{+-}_{\pi\pi}$	-0.284 ± 0.039	[31–33]
$\mathcal{S}^{+-}_{\pi\pi}$	-0.672 ± 0.043	[31–33]
$\rho(C_{\pi\pi}^{+-}, S_{\pi\pi}^{+-})$	+0.013	[31–33]

$$A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00}$$

$$\bar{A}^{-0} = \frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00}$$

11

Time-integrated CP asymmetry of $B^0 \rightarrow \pi^0 \pi^0$

$$A_{CP}^{00} \ (or \ C_{\pi\pi}^{00}) = \frac{\Gamma(B^0 \to \pi^0 \pi^0) - \Gamma(\bar{B}^0 \to \pi^0 \pi^0)}{\Gamma(B^0 \to \pi^0 \pi^0) + \Gamma(\bar{B}^0 \to \pi^0 \pi^0)}$$

b-charge tagging performance:

- \succ wrong tag fraction, ω
- \succ tagging efficiency, ϵ_{tag}
- \succ effective tagging efficiency (power), ϵ_{eff}

$$\epsilon_{eff} = \epsilon_{tag} (1 - 2\omega)^2$$

➢ b-charge tagging at CEPC

- Jet charge measurement at MCTruth level (by Hanhua)
 - ➢ infer b-charge by leading charged particles
 - $\succ \omega \sim 35\%, \epsilon_{eff} \sim 10\%$
- ► Dedicated b-charge tagging algorithm for $B_s \rightarrow J/\psi\phi$ (by Mingrui)

> potential to improve $\omega \sim 25\%$, $\epsilon_{eff} \sim 20\%$

>
$$A_{CP} = -0.33$$
 (W.A.)
> $\sigma_{A_{CP}} = 0.01 \sim 0.006$ when $\omega = 35\% \sim 25\%$

$$\begin{aligned} A_{CP}^{Measured} &= \frac{[\bar{N}(1-\omega)+N\omega]-[\bar{N}\omega+N(1-\omega)]}{\bar{N}+N} \\ &= (1-2\omega)\frac{\bar{N}-N}{\bar{N}+N} = (1-2\omega)A_{CP}^{Truth} \end{aligned}$$

Estimation of other two $B \rightarrow \pi \pi$ channels

Simple method of "efficiency & purity" estimation

$$Accuracy \sim \frac{1}{\sqrt{Yield \times \epsilon \times p}}$$

- ➢ Based on the understanding of detector performance
 - > Fast simulation results of π^0 (right plot)
 - Much better performance of charged particles

Channel	Branching ratio	Yield	Efficiency	Purity		Relative
Ullamier	$(\times 10^{-6})$	at Tera-Z	ϵ	p	$\epsilon \times p$	accuracy
$B^0 o \pi^0 \pi^0$	1.59	$1.9 imes 10^5$	40%	80%	32%	0.4%
$B^+ o \pi^+ \pi^0$	5.5	$6.6 imes10^5$	65%	85%	55%	0.16%
$B^0 \to \pi^+\pi^-$	5.12	$6.3 imes10^5$	90%	85%	77%	0.15%

Input parameters to determine α

- → Uncertainty on the CP asymmetry of $B^0 \rightarrow \pi^+\pi^-$
 - \succ σ_{*A*^{+−}} use the same method as σ_{*A*⁰⁰}: ~ 0.0021
 - → $\sigma_{S^{+-}}$ is rescaled by assuming $\sigma_{A^{+-}}/\sigma_{S^{+-}}$ is same as LHCb: ~ 0.0018

	Bel	le II	Ter	a-Z
	Central value	Uncertainty	PDG central value	Statistical uncertainty
B00	1.31E-06	±0.03(2.3%)±0.03	1.59E-06	0.45%
B+-	5.04E-06	±0.03(0.6%)±0.08	5.12E-06	0.15%
B+0	5.86E-06	±0.03(0.5%)±0.09	5.5E-06	0.16%
A00	-0.14	±0.03±0.01	-0.33	±0.006
A+-	-0.33	±0.01±0.03	-0.32	±0.0021
S+-	-0.64	±0.01±0.01	-0.65	±0.0018
ω	23%	-	25%	-
Effective tagging efficiency (power)	30%	-	25%	-

Fitting results of α

Ref. https://inspirehep.net/literature/1598487

Isospin analysis

CKM global fit (by Pro. Sébastien & Olivier)

 \succ Please see the talk in the second flavor session

16:00 **Potential impact of CEPC on the extraction of the CKM angle alpha** 25' Speaker: Dr. Sébastien Descotes-Genon

Time-dependent CP asymmetry of $B^0 \rightarrow \pi^0 \pi^0$: $S_{\pi\pi}^{00}$

- \triangleright Extra constraint of $S_{\pi\pi}^{00}$ can reduce the two-fold ambiguity on the solutions of α in [75, 105]°
- Time-dependent analysis need vertex information
 - $ightarrow \pi^0 \rightarrow e^+ e^- \gamma$ Dalitz decay or photon conversion events
 - ➤ Belle II: 147 Dalitz events & 124 photon conversion events

Summary

Charmless two-body hadronic B-meson decays: B⁰_(s) → π⁰π⁰, ηη
 CKM angle α determination

Fast simulation: key detector performance modeling
 b-tagging: ε ~ 80%, p ~ 90%
 EM resolution: 3%/√E ⊕ 0.3% (σ_{m_B}~ 30MeV)
 Other effects: photon conversion & separation
 Anticipated performance

Channels	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$	$B^0 \to \eta \eta$	$B_s^0 o \eta\eta$
Signal yield	60000	2000	600	17500
Accuracy	0.45%	4.5%	18%	0.95%

Summary

 \succ Determination of CKM angle α

- $> B \rightarrow \pi\pi$ system only (this talk)
 - ► Estimate anticipated uncertainties on BR and CP asymmetry at CEPC
 - > Final state (π^0 , π^{\pm}) reconstruction $\epsilon \& p$
 - \triangleright b-charge tagging: $\omega = 35\% \sim 25\%$, $\epsilon_{eff} = 10\% \sim 20\%$
 - > Isospin analysis: 1σ confidence level interval of α

≻ Full Belle II [97.1°, 100.3°] = 3.2°

> Full CEPC [98.6°, 99.1°] = 0.5° , ~ 6 times better than Belle II

 \succ Global fit \rightarrow Pro. Sébastien's talk

≻ Future work

- ➤ Time-dependent analysis of $B^0 \to \pi^0 \pi^0$ (S⁰⁰_{ππ}) to reduce ambiguity on α
 ➤ $\pi^0 \to e^+e^-\gamma$ Dalitz decay
 - ➤ photon conversion events

Thank you!

More precise determination of α using $B \rightarrow \rho \rho$

- \succ More precise than $B \rightarrow \pi \pi$ modes
 - \succ Larger branching ratios than $B \rightarrow \pi \pi$
 - $> B^0 \rightarrow \rho^0 \rho^0$ enjoys the charged final state $\rho^0 \rightarrow \pi^+ \pi^-$
 - > Much better charged particle reconstruction performance than neutral particle
 - $\succ S_{\rho\rho}^{00}$ is accessible to reduce the ambiguity solutions

Table 4 World averages for the relevant experimental observables in the $B \rightarrow \rho^i \rho^j$ modes: branching fraction $\mathcal{B}_{\rho\rho}^{ij}$, fraction of longitudinal polarisation f_L^{ij} , time-integrated *CP* asymmetry $\mathcal{C}_{\rho\rho}^{ij}$, time-dependent asymmetry $\mathcal{S}_{\rho\rho}^{ij}$ and correlation (ρ)

Observable	World average
$\mathcal{B}^{+-}_{\rho\rho} \times f^{+-}_L (imes 10^6)$	$(27.76 \pm 1.84) \times (0.990 \pm 0.020)$
$\mathcal{B}_{\rho\rho}^{+0} \times f_L^{+0} \; (\times 10^6)$	$(24.9 \pm 1.9) \times (0.950 \pm 0.016)$
$\mathcal{B}^{00}_{\rho\rho} \times f^{00}_L \; (\times 10^6)$	$(0.93 \pm 0.14) \times (0.71 \pm 0.06)$
${\cal C}^{+-}_{ ho_L ho_L ho_L}$	-0.00 ± 0.09
$\mathcal{S}^{+-}_{ ho_L ho_L}$	-0.15 ± 0.13
$ ho(C^{+-}_{ ho_L ho_L},S^{+-}_{ ho_L ho_L})$	+0.0002
${\cal C}^{00}_{ ho_L ho_L ho_L}$	0.2 ± 0.9
${\cal S}^{00}_{ ho_L ho_L ho_L}$	0.3 ± 0.7

Figure 3.1: Effective tagging efficiency of (left) different HEP experiments and (right) LHCb flavour tagging algorithms [40]. The white lines indicate contours of constant tagging power.

Input values		Time-de	pendent	Tin	Time-integrated		
$A_{\pi^0\pi^0}$	$S_{\pi^0\pi^0}$	$\Delta A_{\pi^0\pi^0}$	$\Delta S_{\pi^0\pi^0}$	$\Delta A_{\pi^0\pi^0}$	$\Delta \mathcal{B}_{\pi^0\pi^0}/\mathcal{B}_{\pi^0\pi^0}$ [%]		
0.34 [650]	0.65 [650]	0.22	0.28	0.03	2.2		
0.43 [88]	0.79	0.23	0.29	0.03	2.2		
0.14 [712]	0.83	0.21	0.26	0.03	2.4		
0.14 [712]	0.40	0.20	0.29	0.03	2.3		
0.14 [712]	-0.61	0.22	0.27	0.03	2.3		
0.14 [712]	-0.94	0.22	0.28	0.03	2.4		

Table 90. Statistical uncertainties $\Delta A_{\pi^0\pi^0}$, $\Delta S_{\pi^0\pi^0}$, and $\Delta B_{\pi^0\pi^0}/B_{\pi^0\pi^0}$ for different input values of $A_{\pi^0\pi^0}$ and $S_{\pi^0\pi^0}$ used for the generation of signal MC.

Table 91. Branching fractions and CP asymmetry parameters entering in the isospin analysis of the $B \rightarrow \pi \pi$ system: Belle measurements at 0.8 ab⁻¹ together with the expected Belle II sensitivity at 50 ab⁻¹.

	Value	$0.8 ab^{-1}$	$50 ab^{-1}$
$\overline{\mathcal{B}_{\pi^+\pi^-}} \; [10^{-6}]$	5.04	$\pm 0.21 \pm 0.18$ [727]	$\pm 0.03 \pm 0.08$
$\mathcal{B}_{\pi^0\pi^0}$ [10 ⁻⁶]	1.31	$\pm 0.19 \pm 0.19$ [712]	$\pm 0.03 \pm 0.03$
$\mathcal{B}_{\pi^+\pi^0}~[10^{-6}]$	5.86	$\pm 0.26 \pm 0.38$ [727]	$\pm 0.03 \pm 0.09$
$A_{\pi^+\pi^-}$	0.33	$\pm 0.06 \pm 0.03$ [728]	$\pm 0.01 \pm 0.03$
$S_{\pi^+\pi^-}$	-0.64	$\pm 0.08 \pm 0.03$ [728]	$\pm 0.01 \pm 0.01$
$A_{\pi^0\pi^0}$	0.14	$\pm 0.36 \pm 0.10$ [712]	$\pm 0.03 \pm 0.01$

Fig. 116. Scan of the confidence for ϕ_2 performing isospin analysis of the $B \to \pi \pi$ system. (Left): The black solid line shows the result of the scan using data from Belle measurements (see Table 91). The blue shaded area in both plots shows the projection for Belle II. (Right): Results of the scan adding the $S_{\pi^0\pi^0}$ constraint. Each line shows the result for a different $S_{\pi^0\pi^0}$ value. The dotted horizontal lines correspond to 1σ .

Fig. 117. Scan of the confidence for ϕ_2 performing isospin analysis of the $B \to \pi \pi$ system. The blue shaded area in both plots shows the projection of the Belle measurements (see Fig. 116) for Belle II. Results of the scan with additional $S_{\pi^0\pi^0}$ constraints are shown by dashed lines. Each line correspond to different input $S_{\pi^0\pi^0}$ values. The red long dashed line on the left figure shows the result for $S_{\pi^0\pi^0} = 0.83$. The dotted horizontal line correspond to 1 σ .

N_sig = 60000, Accuracy = 0.45%

ω	0.35	0.30	0.25	0.20
Acp = -0.33 (PDG)	0.010	0.008	0.006	0.005
Acp = -0.14 (Belle)	0.011	0.009	0.007	0.007

 $B0 \rightarrow \pi + \pi$ -, N_sig = 614400*90% = 5.5E5, Accuracy = 0.15%

ω	0.35	0.30	0.25	0.20
Acp = -0.32 (PDG)	0.0034	0.0025	0.0021	0.0018
Acp = -0.33 (Belle)	0.0033	0.0025	0.0021	0.0018

Data sample	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$
Run 1 $(3 \text{fb}^{-1} [112])$	$-0.34 \pm 0.06 \pm 0.01$	$-0.63 \pm 0.05 \pm 0.01$
Run 1-3 (23fb^{-1})	0.015	0.013
Run 1-6 (300fb^{-1})	0.004	0.004

$$N^{\pm}=N^+_{Truth}+N^-_{Truth}=N^+_{Reco}+N^-_{Reco}$$

 $\sigma_{N^\pm} = accuracy imes N^\pm$

Define ratio r

$$A_{CP} = rac{N^+_{Truth} - N^-_{Truth}}{N^+_{Truth} + N^-_{Truth}} = rac{N^+_{Truth} - (N^\pm - N^+_{Truth})}{N^\pm} = rac{2N^+_{Truth} - N^\pm}{N^\pm} = 2rac{N^+_{Truth}}{N^\pm} - 1$$

$$\begin{aligned} \sigma_{A_{CP}}^{2} &= \left(\frac{\partial A_{CP}}{\partial N_{Truth}^{+}}\right)^{2} \sigma_{N_{Truth}^{+}}^{2} + \left(\frac{\partial A_{CP}}{\partial N^{\pm}}\right)^{2} \sigma_{N^{\pm}}^{2} \\ &= \left[\frac{2}{N^{\pm}}\right]^{2} \sigma_{N_{Truth}^{+}}^{2} + \left[\frac{-2N^{+}}{N^{\pm 2}}\right]^{2} \sigma_{N^{\pm}}^{2} \end{aligned}$$
25

B⁰→π ^₀ π ^₀	Final state	Total in theory	In acceptance	Selected	Efficiency	Purity	Relative accuracy
Tera-Z	ππ	195692	-	-	-	-	-
	$\pi_{\gamma\gamma}\pi_{\gamma\gamma}$	191113*0.65 = 124223	-	75859 49689	0.4	0.8 0.72	0.4% 0.5%
	π _{dal} π _{γγ}	4579	-	?	?		
	$\pi_{\gamma c \gamma} \pi_{\gamma \gamma}$	191113*0.2 = 38222	-	?	?		
Belle II	ππ	103000	-	-	-	-	-
	$\pi_{\gamma\gamma}\pi_{\gamma\gamma}$	100590 - 9270 = 91320	78486	15068	0.192	0.158	2%
	π _{dal} π _{γγ}	2410	2060	147	0.072	0.170	
	$\pi_{\gamma c \gamma} \pi_{\gamma \gamma}$	100590*0.09 = 9270	3090	124	0.042	0.176	

 $\pi^0_{\gamma\gamma}$ are used for the time-integrated CP violation study. There is no event overlap between events with B^0_{sig} candidates reconstructed from two $\pi^0_{\gamma\gamma}$ and events containing Dalitz decays or converted photons.

ECAL energy resolution	Channel	σ_{m_B} (MeV)	Signal	$q\bar{q}$ background	Background with false $\pi^0(\eta)$	$\sqrt{S+B}/S$ (%)
	$B^0 ightarrow \pi^0 \pi^0$	30.25	75859	15767	7.52%	0.40 ± 0.01
3% 0 3%	$B^0_s \to \pi^0 \pi^0$	30.21	2545	5145	14.73%	4.03 ± 0.55
$\sqrt{E} \oplus 0.370$	$B^0 ightarrow \eta\eta$	33.30	693	11034	52.86%	17 ± 2
	$B_s^0 o \eta\eta$	33.26	19208	10586	65.25%	0.90 ± 0.05
	$B^0 o \pi^0 \pi^0$	166	57746	381331	4.04%	1.15 ± 0.03
17% o 1%	$B_s^0 ightarrow \pi^0 \pi^0$	165	2243	142716	5.74%	19.3 ± 0.6
$\sqrt{E} \oplus 1/0$	$B^0 \to \eta \eta$	170	324	68243	88.27%	85 ± 6
	$B_s^0 o \eta\eta$	174	8300	49248	86.30%	2.90 ± 0.20

Table 8: Measurement accuracies of $B_{(s)}^0 \to \pi^0 \pi^0$ and $B_{(s)}^0 \to \eta \eta$ at different ECAL energy resolutions when using the CEPC baseline b-tagging.

(a) 2D energy spectrum of π^0 pairs in $B^0 \to \pi^0 \pi^0$ (left), $B_s^0 \to \pi^0 \pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

(b) Correlation between $E_{\pi^0\pi^0}$ and $\theta_{\pi^0\pi^0}$ in $B^0 \to \pi^0\pi^0$ (left), $B_s^0 \to \pi^0\pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

Dependence of B mass resolution on detector performance

- CEPC baseline single photon angular resolution ~1mrad/√E
- ECAL energy resolution dominates the contribution when $\sigma_{\theta} < \frac{1 \text{mrad}}{\sqrt{E}}$
- The following analysis only takes ECAL energy resolution into account
- $\sigma_{mB} \sim 30$ MeV requires ECAL energy resolution $\sim 3\%/\sqrt{E \oplus 0.3\%}$

EM Energy Resolution

From a historical perspective

The performance now measured in electron beams with final prototypes shows that we are below 2% energy resolution at 1 GeV and near to 5% at 100 MeV.

Belle II ECAL

The intrisic energy resolution of the calorimeter, as measured in a prototype [3], can be approximated as:

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{0.066\%}{E}\right)^2 + \left(\frac{0.81\%}{\sqrt[4]{E}}\right)^2 + (1.34\%)^2},\tag{9.1}$$

where E is in GeV and the first term represents the electronics noise contribution.

3.5. Electromagnetic calorimeter (ECL)

The electromagnetic calorimeter is used to detect gamma rays as well as to identify electrons, i.e. separate electrons from hadrons, in particular pions. It is a highly segmented array of thallium-doped caesium iodide CsI(Tl) crystals assembled in a projective geometry (Fig. 3). All three detector regions, the barrel as well as the forward and backward endcaps, are instrumented with a total of 8736 crystals, covering about 90% of the solid angle in the centre-of-mass system. The CsI(Tl) crystals, preamplifiers, and support structures have been reused from Belle, whereas the readout electronics and reconstruction software have been upgraded. In the Belle experiment, the energy resolution observed with the same calorimeter was $\sigma_E/E = 4\%$ at 100 MeV, 1.6% at 8 GeV, and the angular resolution was 13 mrad (3 mrad) at low (high) energies; π^0 mass resolution was 4.5 MeV/ c^2 [2]; in the absence of background a very similar performance would also be expected for Belle II.

Belle II

PTEP 2019, 123C01

Fig. 113. Projections of the fit results for candidates reconstructed as $B^0 \to \pi^0 (\to \gamma \gamma) \pi^0 (\to \gamma \gamma)$. The projections for one example pseudo-experiment are shown onto $M_{\rm bc}$ (left) and ΔE (right). Points with error bars represent the toy sample. The full fit results are shown by the solid blue curves. Contributions from signal, generic $B\bar{B}$ events, continuum background, and background from wrongly reconstructed signal events are shown by the long dashed green, short dashed red, dash-dotted blue, and dotted orange curves, respectively. The input values used for this pseudo-experiment are $A_{\pi^0\pi^0} = 0.34$ and $S_{\pi^0\pi^0} = 0.65$.

 $B\bar{B}$ background Sources of background from $B\bar{B}$ events are studied with a 4 ab^{-1} MC sample. The largest contribution comes from $B^+ \to \rho^+ (\to \pi^+ \pi^0) \pi^0$ decays, where the π^+ is lost. Events where the remaining π^0 pair decays into four photons which arrive at the ECL are the main $B\bar{B}$ background for $B^0 \to \pi^0_{\gamma\gamma} \pi^0_{\gamma\gamma}$ candidates. Those events which contain a converted photon or a Dalitz π^0 are the main background $B\bar{B}$ source for $B^0 \to \pi^0_{dal} \pi^0_{\gamma\gamma}$ candidates. This background peaks at the same value of M_{bc} , but is shifted in ΔE towards negative values due to the missing π^+ .